精英家教网 > 高中数学 > 题目详情

【题目】某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率有帮助”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:

60分及以下

61~70分

71~80分

81~90分

91~100分

甲班(人数)

3

6

12

15

9

乙班(人数)

4

7

16

12

6

现规定平均成绩在80分以上(不含80分)的为优秀.

(1)由以上统计数据填写列联表,并判断是否有的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助;

(2)对甲乙两班60分及以下的同学进行定期辅导,一个月后从中抽取3人课堂检测,表示抽取到的甲班学生人数,求及至少抽到甲班1名同学的概率.

【答案】(1)见解析;(2).

【解析】

1)根据题意得到列联表,然后由列联表中的数据得到的值,再结合临界值表可得结论.(2)由题意得到随机变量的所有可能取值,并分别求出对应的概率,进而得到的分布列,于是可得所求.

(1)由题意可得列联表如下:

优秀人数

非优秀人数

总计

甲班

21

24

45

乙班

27

18

45

合计

48

42

90

由表中数据可得

所以没有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.

(2)由题意得60分以下共有7人,其中甲班有3人,所以随机变量显然的所有可能取值为

所以随机变量的分布列为

0

1

2

3

所以

至少抽到1名甲班学生概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求的取值范围;

2)若,是否存在实数,使得都成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使在区间上恒成立,则称区间是函数公共邻域.设函数的反函数为,函数的图像与函数的图像关于点对称.

1)求函数的解析式;

2)若,求函数的定义域;

3)是否存在实数,使得区间公共邻域,若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数f(x)的定义域,判断并证明函数f(x)的奇偶性;

(Ⅱ)是否存在这样的实数k,使f(k-x2)+f(2k-x4)≥0对一切恒成立,若存在,试求出k的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足为常数),且3

1)求实数的值,并求出函数的解析式;

2)当时,讨论函数的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.

(1)求的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)

(2)若按照分层抽样从中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形理论是当今世界十分风靡和活跃的新理论、新学科。其中,把部分与整体以某种方式相似的形体称为分形。分形是一种具有自相似特性的现象,图象或者物理过程。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构。也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形则当时,该黑色三角形内共去掉( )个小三角形

A. 81 B. 121 C. 364 D. 1093

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,双十一购物狂欢节(简称“双11”)活动已成为中国电子商务行业年度盛事,某网络商家为制定2018年“双11”活动营销策略,调查了2017年“双11”活动期间每位网购客户用于网购时间(单位:小时),发现近似服从正态分布

(1)求的估计值;

(2)该商家随机抽取参与2017年“双11”活动的10000名网购客户,这10000名客户在2017年“双11”活动期间用于网购时间属于区间的客户数为.该商家计划在2018年“双11”活动前对这名客户发送广告,所发广告的费用为每位客户0.05元.

(i)求该商家所发广告总费用的平均估计值

(ii)求使取最大值时的整数的值

附:若随机变量服从正态分布

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)存在两个极值点,,的取值范围.

查看答案和解析>>

同步练习册答案