精英家教网 > 高中数学 > 题目详情
15.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=7,则|AB|的值为(  )
A.6B.8C.9D.10

分析 根据抛物线的方程求出准线方程是x=-1,结合抛物线的定义可得|AF|=x1+1且|BF|=x2+1,两式相加并结合x1+x2=7,即可得到|AB|的值.

解答 解:∵抛物线方程为y2=4x,
∴p=2,可得抛物线的准线方程是x=-1,
∵过抛物线 y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2),
∴根据抛物线的定义,可得|AF|=x1+$\frac{p}{2}$=x1+1,|BF|=x2+$\frac{p}{2}$=x2+1,
因此,线段AB的长|AB|=|AF|+|BF|=x1+x2+2,
又∵x1+x2=7,∴|AB|=x1+x2+2=9.
故选:C.

点评 本题给出抛物线焦点弦AB端点A、B的横坐标的关系式,求AB的长度,着重考查了抛物线的标准方程和简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(a)=$\frac{si{n}^{2}(π-α)•cos(2π-α)•tan(-π+α)}{sin(-π+α)•tan(-α+3π)}$.
(1)化简f(α);
(2)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(3)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以原点为圆心,椭圆C的短轴长为直径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同的两点,直线PM与QN相交于点T,求证:点T在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在网格中粗线显示的为某几何体的三视图(正方形网格的边长为1),则该几何体的体积为(  )
A.5B.6C.6.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列有关命题的叙述,其中错误的个数为(  )
①若p∨q为真命题,则p∧q也为真命题
②“x>5”是“x2-4x-5>0”的充分不必要条件
③命题:?x∈R,2x>x2的否定为:?x0∉R,2${\;}^{{x}_{0}}$≤x02
④?x∈R,使得ex=1+x是真命题.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}各项均为正数,其前n项和为Sn,且满足$4{S_n}=a_n^2+2{a_n}({n∈{N^*}})$,则an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所救援程序框图,输出s的值为(  )
A.1B.$\sqrt{2015}$-1C.$\sqrt{2016}$-1D.$\sqrt{2017}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从旅游景点A到B有一条100km的水路,某轮船公司开设一个游轮观光项目.已知游轮每小时使用燃料费用与速度的立方成正比例,其他费用为每小时3240元,游轮最大时速为50km/h,当游轮的速度为10km/h时,燃料费用为每小时60元,设游轮的航速为vkm/h,游轮从A到B一个单程航行的总费用为S元.
(1)将游轮从A到B一个单程航行的总费用S表示为游轮的航速v的函数S=f(v);
(2)该游轮从A到B一个单程航行的总费用最少时,游轮的航速为多少,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个四面体的三视图如图所示,则该四面体的外接球的表面积为(  )
A.$\frac{4π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

同步练习册答案