A. | 6 | B. | 8 | C. | 9 | D. | 10 |
分析 根据抛物线的方程求出准线方程是x=-1,结合抛物线的定义可得|AF|=x1+1且|BF|=x2+1,两式相加并结合x1+x2=7,即可得到|AB|的值.
解答 解:∵抛物线方程为y2=4x,
∴p=2,可得抛物线的准线方程是x=-1,
∵过抛物线 y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2),
∴根据抛物线的定义,可得|AF|=x1+$\frac{p}{2}$=x1+1,|BF|=x2+$\frac{p}{2}$=x2+1,
因此,线段AB的长|AB|=|AF|+|BF|=x1+x2+2,
又∵x1+x2=7,∴|AB|=x1+x2+2=9.
故选:C.
点评 本题给出抛物线焦点弦AB端点A、B的横坐标的关系式,求AB的长度,着重考查了抛物线的标准方程和简单几何性质等知识,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2015}$-1 | C. | $\sqrt{2016}$-1 | D. | $\sqrt{2017}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4π}{3}$ | B. | 4π | C. | $\frac{2π}{3}$ | D. | 2π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com