精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\frac{{{x^2}+m}}{x}$,且f(1)=2,
(1)判断函数的奇偶性;
(2)判断函数f(x)在(0,1]的增减性,并用单调性定义证明之;
(3)若f(k)>2,求k的取值范围.

分析 由f(1)=2,求出m的值,写出f(x)的解析式;
(1)利用奇偶性的定义判断f(x)定义域上的奇函数;
(2)利用定义证明f(x)在(0,1]上是单调减函数;
(3)同理可证f(x)是[1,+∞)上的单调增函数,
再由单调性的定义转化不等式f(k)>2,从而求出k的取值范围.

解答 解:由f(1)=2,
得$\frac{{1}^{2}+m}{1}$=2,
解得m=1;…(1分)
∴f(x)=$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$;
(1)∵f(x)定义域为(-∞,0)∪(0,+∞),关于原点对称;
且$f(-x)=(-x)+\frac{1}{-x}=-(x+\frac{1}{x})=-f(x)$,
∴f(x)是定义域上的奇函数;…(4分)
(2)f(x)在(0,1]上是单调减函数;
证明:设x1,x2是(0,1]上的任意两个实数,且x1<x2…(5分)
则$f({x_2})-f({x_1})=({x_2}+\frac{1}{x_2})-({x_1}+\frac{1}{x_1})$…(6分)
=$({x_2}-{x_1})+(\frac{1}{x_2}-\frac{1}{x_1})$
=$({x_2}-{x_1})+\frac{{{x_1}-{x_2}}}{{{x_1}{x_2}}}$
=$({x_2}-{x_1})(1-\frac{1}{{{x_1}{x_2}}})$;…(7分)
∵0<x1<x2≤1,
∴${x_2}-{x_1}>0,0<{x_1}{x_2}<1,1-\frac{1}{{{x_1}{x_2}}}<0$;…(8分)
∴f(x2)-f(x1)<0,
∴f(x1)>f(x2);…(9分)
∴f(x)在(0,1]上是单调减函数.…(10分)
(3)同理可证f(x)在[1,+∞)上是单调增函数;…(11分)
由f(k)>2得f(k)>f(1),…(12分)
∴k>1或0<k<1;…(13分)
即所求k的取值范围是(0,1)∪(1,+∞).                  …(14分

点评 本题考查了函数的奇偶性与单调性的定义与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在正方体ABCD-A1B1C1D1中,设E是棱CC1的中点.
(1)求证:BD⊥AE
(2)求证:AC∥平面B1DE;
(3)求锐二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,直三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,AA1=2,点M,N分别为A1B和B1C1的中点.
(1)求异面直线MN与A1C所成角的余弦值;
(2)求三棱锥A1-MNC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}中,a1=1,a2=3,且2nSn=(n+1)Sn+1+(n-1)Sn-1(n≥2,n∈N),则S30=$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工厂要建造一个长方体无盖贮水池,其容积为6400m3,深为4m,如果池底每1m2的造价为300元,池壁每1m2的造价为240元,问怎样设计水池能使总造价最低,最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)为R上奇函数,当x≥0时,f(x)=x+1,则当x<0时,f(x)=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点P是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上的一点,M、N分别是两圆:(x+3)2+y2=1和(x-3)2+y2=1上的点,则|PM|+|PN|的最大值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E,F分别是棱AB,BC上的动点,且AE=BF.当A1,E,F,C1共面时,平面A1DE与平面C1DF所成锐二面角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{5}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若数x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{2x+y-7≤0}\end{array}}\right.$,则z=x-2y的最小值是(  )
A.-3B.-4C.6D.-6

查看答案和解析>>

同步练习册答案