精英家教网 > 高中数学 > 题目详情
对于任意的m[-1,1],使不等式恒成立的x取值范围是________

 

答案:
解析:

 


提示:

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点,且函数f(x)的图象在x=2处的切线的斜率为2e2
(Ⅰ)求函数f(x)的解析式并求单调区间.
(Ⅱ)设g(x)=
f′(x)ex
,其中x∈[-2,m],问:对于任意的m>-2,方程g(x)=(m-1)2在区间(-2,m)上是否存在实数根?若存在,请确定实数根的个数.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1);
(Ⅲ)令Tn=
1
2
(b1a+b2a2+b3a3+…+bnan)
(a>0),求同时满足下列两个条件的所有a的值:①对于任意正整数n,都有Tn
1
6
;②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数f (x),对于任意的m,n∈(0,+∞),都有f(m•n)=f(m)+f(n)成立,当x>1时,f(x)<0.(Ⅰ)计算f(1);(Ⅱ)证明f (x)在(0,+∞)上是减函数;(Ⅲ)当f(2)=-
12
时,解不等式f(x2-3x)>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•湖北模拟)已知函数f(x)=x2-2x-3,x∈[0,1],g(x)=x3-3a2x-2a,x∈[0,1].
(1)求f(x)的值域M;
(2)若a≥1,求g(x)的值域N;
(3)在(2)的条件下,若对于任意的x∈[0,1],总存在x0∈[0,1]使得f(x1)=g(x0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若对于任意的m、n∈[-1,1]有
f(m)+f(n)
m+n
>0

(1)判断并证明函数的单调性;
(2)解不等式f(x+
1
2
)<f(1-x)

(3)若f(x)≤-2at+2对于任意的x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案