精英家教网 > 高中数学 > 题目详情

【题目】随着互联网经济逐步被人们接受,网上购物的人群越来越多,网银交易额也逐年增加,某地连续五年的网银交易额统计表,如表所示:

年份

2012

2013

2014

2015

2016

网银交易额(亿元)

5

6

7

8

10

经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,工作人员将上表的数据进行了处理,,得到如表:

时间代号

1

2

3

4

5

0

1

2

3

5

1)求关于的线性回归方程;

2)通过(1)中的方程,求出关于的回归方程;

3)用所求回归方程预测2020年该地网银交易额.

(附:在线性回归方程中,

【答案】1;(2;(314.4亿元.

【解析】

1)先结合题设中的数据,结合回归直线方程的求法求出关于的线性回归方程;

2)利用关于的线性回归方程求解即可;

3)由关于的线性回归方程求解即可.

解:(1)由已知有

.

2)将,代入得到,

.

3)由(2)知,当时,

所以预测2020年该地网银交易额为14.4亿元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

1)求数列的通项公式;

2)求证:数列是等差数列,求数列的通项公式;

3)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,底边,侧棱 为侧棱上的点.

(1)若平面,求二面角的余弦值的大小;

(2)若,侧棱上是否存在一点,使得平面,若存在,求的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若有两个零点,求的范围;

2)若有两个极值点,求的范围;

3)在(2)的条件下,若的两个极值点为 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体中棱两两垂直,那么称四面体为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中表示斜边上的高,分别表示内切圆与外接圆的半径)

直角三角形

直角四面体

条件

结论1

结论2

结论3

结论4

结论5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求的图象在处的切线方程;

(Ⅱ)若函数有两个不同零点 ,且,求证: ,其中的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一个负数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,EFGH分别是棱的中点.

1)判断直线的位置关系,并说明理由;

2)求异面直线所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数,设

(1)求的解析式;

(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;

(3)若方程有三个不同的实数根,求实数的取值范围.

查看答案和解析>>

同步练习册答案