精英家教网 > 高中数学 > 题目详情
4.已知{an}是首项为1的等比数列,且a4=8,则数列$\left\{{\frac{1}{a_n}}\right\}$的前5项和为(  )
A.31B.$\frac{31}{16}$C.11D.$\frac{11}{16}$

分析 求出数列的公比,锐角利用等比数列求和公式求解即可.

解答 解:{an}是首项为1的等比数列,且a4=8,可得q3=8,可得q=2,
数列$\left\{{\frac{1}{a_n}}\right\}$也是等比数列,公比为:$\frac{1}{2}$,首项为1.
它的前5项和为:$\frac{1-{(\frac{1}{2})}^{5}}{1-\frac{1}{2}}$=$\frac{31}{16}$.
故选:B.

点评 本题考查等比数列求和公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.下列结论:
①若命题p:存在x∈R,tan x=2;命题q:任意x∈R,x2-x+$\frac{1}{2}$>0.则命题“p且(非q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}$=-3;
③设F1,F2是双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为$\sqrt{3}$.
④设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值为1.
其中正确结论的序号为①③④.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=sin2x+cos2x在[0,π]上的单调递减区间为[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(理)64个正数排成8行8列,如图所示:在符号aij(1≤i≤8,1≤j≤8)中,i表示该数所在的行数,j表示该数所在的列数.已知每一行都成等差数列,而每一列都成等比数列(且每列公比都相等).若a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$.则a81a82…a88…aij=j($\frac{1}{2}$)i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0则x2+y2≠0”.
B.若命题$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,则?p:?x∈R,x2-x+1>0.
C.△ABC中,sinA>sinB是A>B的充要条件.
D.?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若2a=5b=m,且$\frac{1}{a}+\frac{1}{b}=2$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若动点P(x,y)在$\frac{x^2}{4}+\frac{y^2}{9}=1$曲线上变化,则x2+2y的最大值为(  )
A.$\frac{25}{4}$B.$\frac{27}{4}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果椭圆$\frac{x^2}{81}+\frac{y^2}{25}=1$上一点M到此椭圆一个焦点F1的距离为10,N是MF1的中点,O是坐标原点,则ON的长为(  )
A.2B.4C.8D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案