精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆为椭圆的左、右焦点,点在直线上且不在轴上,直线与椭圆的交点分别为为坐标原点.

设直线的斜率为,证明:

问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

【答案】(1)证明见解析;(2).

【解析】

(1)设出P的坐标,表示出斜率,化简可得结论;

(2)设出直线的方程与椭圆方程联立,求出斜率,利用kOA+kOB+kOC+kOD=0,即可得到结论.

因为椭圆方程为,所以F1(﹣1,0)、F2(1,0)

Px0,2﹣x0),则

所以

(2)记ABCD坐标分别为(x1y1)、(x1y1)、(x1y1)、(x1y1).

设直线PF1xm1y﹣1,PF2xm2y+1

联立可得

代入可得

同理,联立PF2和椭圆方程,可得

m1﹣3m2=2(由(1)得)可解得,或

所以直线方程为

所以点P的坐标为(0,2)或

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ab是异面直线,给出下列结论:

一定存在平面,使直线平面,直线平面

一定存在平面,使直线平面,直线平面

一定存在无数个平面,使直线b与平面交于一个定点,且直线平面.

则所有正确结论的序号为(

A.②③B.①③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,都为等边三角形,且侧面与底面互相垂直,的中点,点在线段上,且为棱上一点.

(1)试确定点的位置,使得平面

(2)在(1)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由非负整数组成的无穷数列,该数列前n项的最大值记为,第n项之后的各项的最小值记为,设.

1)若,是一个周期为4的数列,写出的值;

2)设d为非负整数,证明:)的充要条件是是公差为d的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种笼具由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

1)求这种笼具的体积(结果精确到0.1);

2)现要使用一种纱网材料制作50笼具,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为FF关于原点的对称点为P,过F轴的垂线交抛物线于MN两点,给出下列三个结论:

必为直角三角形;

②直线必与抛物线相切;

的面积为.其中正确的结论是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长度分别为的四根木条围成一个平面四边形,则该平面四边形面积的最大值是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中(图1),的中点,,且,现将此平面四边形沿折起,使得二面角为直二面角,得到一个多面体,为平面内一点,且为正方形(图2),分别为的中点.

1)求证:平面//平面

2)在线段上是否存在一点,使得平面与平面所成二面角的余弦值为?若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是( )

A. B. [,]

C. D.

查看答案和解析>>

同步练习册答案