精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin2x+sinxcosx+cos2x,x∈R. 求:
(1)f()的值;
(2)函数f(x)的最小值及相应x值;
(3)函数f(x)的递增区间.

【答案】解:f(x)=2sin2x+sinxcosx+cos2x
=1+sin2x+sinxcosx=1++sin2x,
=(sin2x﹣cos2x)+=sin(2x﹣)+
(1)f()=(sin﹣cos)+=
(2)f(x)的最小值为,此时2x﹣=2kπ﹣
即x=kπ﹣,k∈Z;
(3)由﹣+2kπ≤2x﹣+2kπ,k∈Z,得:﹣+kπ≤x≤+kπ,k∈Z.
∴函数f(x)的递增区间为[﹣+kπ,+kπ],k∈Z.
【解析】(1)用三角函数的二倍角公式与和正弦的和差角公式函数化简,再代值计算即可,
(2)根据化简后的解析式,即可求出最小值和对应的想值,
(3)由(1)的解析式,结合三角函数的单调性求函数的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆与坐标轴交于(如图).

1)点是圆上除外的任意点(如图1),与直线交于不同的两点,求的最小值;

2)点是圆上除外的任意点(如图2),直线轴于点,直线于点.的斜率为的斜率为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各对函数中,相同的是(
A.f(x)=lgx2 , g(x)=2lgx
B.f(x)=lg ,g(x)=lg(x+1)﹣lg(x﹣1)
C.f(u)= ,g(v)=
D.f(x)=x,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=x|x﹣a|+2x.
(1)若a=3,求函数f(x)在区间[0,4]上的最大值;
(2)若存在a∈(2,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,当时, ,且曲线在点处的切线方程为

1的值;

2)若存在实数,对任意的,都有,求整数的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直线2x﹣y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x﹣4y=0相切,则实数λ的值为(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用两角和与差的正弦、余弦公式证明:
sinαcosβ=[sin(α+β)+sin(α﹣β)];
cosαsinβ=[sin(α+β)﹣sin(α﹣β)];
cosαsinβ=[cos(α+β)+cos(α﹣β)];
sinαcosβ=[cos(α+β)﹣cos(α﹣β)].

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,a2=3,且an+2=|an+1|﹣an , n∈N* , 记{an}的前n项和为Sn , 则S100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某生产线上随机抽取40件产品,测量这些产品的某项技术指标值,得到如下的频数表

频数

3

15

17

5

(1)估计该技术指标值的平均数(以各组区间中点值为代表);

(2)若,则该产品不合格,其余合格产品。产生一件产品,若是合格品,可盈利100元,若不是合格品则亏损20元。从该生产线生产的产品中任取2件,记为这2件产品的总利润,求随机变量的分布列和期望值。

查看答案和解析>>

同步练习册答案