分析 (1)根据正弦定理即可确定出AB的长;
(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理即可得解.
解答 解:(1)在△ABC中,因为cosA=$\frac{12}{13}$,cosC=$\frac{3}{5}$,所以sinA=$\frac{5}{13}$,sinC=$\frac{4}{5}$,
从而sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=$\frac{5}{13}$×$\frac{3}{5}+\frac{12}{13}×\frac{4}{5}$=$\frac{63}{65}$,
由正弦定理$\frac{AB}{sinC}$=$\frac{AC}{sinB}$,得AB=$\frac{AC•sinC}{sinB}$=$\frac{1260×\frac{4}{5}}{\frac{63}{65}}$=1040m.
所以索道AB的长为1040m.
(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,
所以由余弦定理得:d2=(100+50t)2+(130t)2-2×130t×(100+50t)×$\frac{12}{13}$=200(37t2-70t+50)=200[37(t-$\frac{35}{37}$)2+$\frac{625}{37}$],
因0≤t≤$\frac{1040}{130}$,即0≤t≤8,
故当t=$\frac{35}{37}$min时,甲、乙两游客距离最短.
点评 此题考查了余弦定理,锐角三角函数定义,以及勾股定理,利用了分类讨论及数形结合的思想,属于解直角三角形题型.
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{6}}{8}$π | B. | $\frac{3}{2}$π | C. | $\frac{\sqrt{6}}{2}$π | D. | $\frac{\sqrt{3}}{4}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | (2,4) | C. | $(\frac{1}{2},1)$ | D. | $(\frac{1}{4},\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[\frac{3}{2},1+\sqrt{3}]$ | B. | $[2,1+\sqrt{3}]$ | C. | [1,3] | D. | [2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 平行 | B. | 重合 | C. | 相交 | D. | 垂直 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com