精英家教网 > 高中数学 > 题目详情
11.将1、2、3、…9这九个数字填在如图所示的9个空格中,要求每一行从左到右依次增大,每一列从上到下依次增大,当6在图中的位置时,则填写空格的方法有(  )
A.8种B.18种C.12种D.24种

分析 根据中间数为6,其他数从左到右依次增大,从上到下依次增大,故左上角必须填数字1,右下角必须填数字9,设未填的方格中应填的数字依次数a、b、c、d、e、f,根据排列组合可得结论.

解答 解:如图所示,中间数为4,其他数从左到右依次增大,从上到下依次增大,故左上角必须填数字1,右下角必须填数字9.

设未填的方格中应填的数字依次是a、b、c、d、e、f,
其中d,f只能是7和8,有A22种填法,
当a,c排定后b,e随之排定,故只要排好a,c即可,
在2,3,4,5中按a小c大来选排,有C24种排法,
因此,一共有A22•C24=12种不同的填法,
故选:C.

点评 本题主要考查了计数原理的应用,以及分类讨论的思想和排列组合的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知α是第三象限角,且f(α)=$\frac{tan(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}{cos(-α-π)tan(-π-α)}$.
(1)化简f(α).
(2)若α=-1920°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设△ABC的角A,B,C所对的边分别是a,b,c,若a=8,B=60°,C=75°,则b等于(  )
A.$4\sqrt{7}$B.$4\sqrt{6}$C.$4\sqrt{5}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若C9x-2=C92x-1,则x=(  )
A.-1B.4C.-1或4D.1或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某校本学期迎来了某师范大学数学系甲、乙、丙、丁共4名实习教师,若将这4名实习教师分配到高一年级编号为1,2,3,4的4个班级实习,每班安排1名实习教师,且甲教师要安排在1班或2班,则不同的分配方案有(  )
A.6种B.9种C.12种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中a1=$\frac{1}{2}$,函数f(x)=$\frac{2x}{1+x}$.
(1)若正项数列{an}满足an+1=f(an),试求出a2,a3,a4,由此归纳出通项an,并加以证明;
(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}的前项和为Tn,且bn=$\frac{{a}_{n}}{{2}^{n}+1}$,求证:Tn$<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.统计某校1000名学生的数学水平测试成绩,得到样本频率分布直方图如图所示,若满分为100分,规定不低于60分为及格,则及格率是80%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-π<φ<π)的部分图象如图所示,为了得到g(x)=$\sqrt{3}$cos(ωx+$\frac{φ}{2}$)的图象,只需将f(x)的图象(  )
A.向左平移$\frac{5π}{12}$个单位长度B.向左平移$\frac{5π}{6}$个单位长度
C.向右平移$\frac{5π}{12}$个单位长度D.向右平移$\frac{5π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,已知tan$\frac{A+B}{2}$=sinC,给出以下四个结论①②③④,其中正确的是②④(写出所有正确结论的序号).
①$\frac{tanA}{tanB}$=2;②1<sinA+sinB≤$\sqrt{2}$;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.

查看答案和解析>>

同步练习册答案