精英家教网 > 高中数学 > 题目详情
已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求证数列{bn}是等比数列;
(2)已知数列{cn}满足cn=(n∈N*),试建立数列{cn}的递推公式(要求不含an或bn);
(3)若数列{an}的前n项和为Sn,求Sn
【答案】分析:(1)由a<b,且a2-a-6=0,b2-b-6=0,解得a=-2,b=3,a2=-12.由a1=1,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*),得到bn+1=an+2-3an+1=3bn(n∈N*).由此能够证明数列{bn}是等比数列.
(2)由,得.由此能够推导出数列{cn}的递推公式.
(3)由cn=,(n∈N*),得=(3n-2)•3n-1,(n∈N*).由此利用错位相减法能够求出数列{an}的前n项和.
解答:(1)证明:∵a<b,且a2-a-6=0,b2-b-6=0,
∴a=-2,b=3,a2=-12.
∵a1=1,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*),
∴bn+1=an+2-3an+1
=6an+1-9an-3an+1
=3(an+1-3an
=3bn(n∈N*).
又b1=a2-3a1=9,
∴数列{bn}是公比为3,首项为b1的等比数列.
(2)解:由(1)得
于是,有(n∈N*),

,(n∈N*),则cn+1-cn=1,n∈N*
因此,数列{cn}的递推公式是
(3)解:由(2)可知,数列{cn}是公差为1,首项为的等差数列,
于是cn=,(n∈N*).
=(3n-2)•3n-1,(n∈N*).
因此,Sn=a1+a2+…+an
=1+4•3+7•32+…+(3n-2)•3n-1
3Sn=1•3+4•32+7•33+…+(3n-2)•3n
将上述两个等式相减,
得-2=1+-(3n-2)•3n
∴2Sn=n•3n+1-+
所以-+,(n∈N*).
点评:本题考查等比数列的证明,数列的递推公式的推导,数列前n项和的求法.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b∈R+且a2-ab+b2=a+b,求证:1<a+b≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*)bn=an+1-ban(n∈N*)
(1)求证数列{bn}是等比数列;
(2)求数列{an}的通项公式an
(3)若{cn}满足c1=1,c2=5,cn+2=5cn+1-6cn(n∈N*),试用数学归纳法证明:cn +acn-1=
an3n-2
(n≥2,n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求证数列{bn}是等比数列;
(2)已知数列{cn}满足cn=
an3n
(n∈N*),试建立数列{cn}的递推公式(要求不含an或bn);
(3)若数列{an}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,数学公式数学公式
(1)求证数列{bn}是等比数列;
(2)求数列{an}的通项公式an
(3)若{cn}满足c1=1,c2=5,数学公式,试用数学归纳法证明:数学公式

查看答案和解析>>

科目:高中数学 来源:2012年上海市黄浦区高考数学一模试卷(理科)(解析版) 题型:解答题

已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,
(1)求证数列{bn}是等比数列;
(2)求数列{an}的通项公式an
(3)若{cn}满足c1=1,c2=5,,试用数学归纳法证明:

查看答案和解析>>

同步练习册答案