精英家教网 > 高中数学 > 题目详情
设0<x<1,a>0,a≠1,比较|loga(1-x)|与|loga(1+x)|的大小(要写出比较过程).
分析:此题有两种比较大小的方法①做差比较大小②做商比较大小,解本题的另一关键不要忽视对a的分类讨论.
解答:解一:当a>1时,
|loga(1-x)|=-loga(1-x),|loga(1+x)|=loga(1+x),
|loga(1-x)|-|loga(1+x)|=-[loga(1-x)+loga(1+x)]=-loga(1-x2).
∵a>1,0<1-x2<1,∴-loga(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|.
当0<a<1时,
|loga(1-x)|=loga(1-x),|loga(1+x)|=-loga(1+x),
|loga(1-x)|-|loga(1+x)|=loga(1-x2).
∵0<a<1,0<1-x2<1,∴loga(1-x2)>0,
∴|loga(1-x)|>|loga(1+x)|.
因此当0<x<1,a>0,a≠1时,总有|loga(1-x)|>|loga(1+x)|.

解二:∵
|loga(1-x)|
|loga(1+x)|
=|
loga(1-x)
loga(1+x)
|=|log1+x(1-x)|

∵1+x>1,0<1-x<1,
原式=-log1+x(1-x)=log1+x
1
1-x
=log1+x
1+x
1-x2
=1-log1+x(1-x2)

∵1+x>1,0<1-x2<1,log1+x(1-x2)<0
∴原式>1,即
|loga(1-x)|
|loga(1+x)|
>1

∴|loga(1-x)|>|loga(1+x)|.
点评:本题考查比较大小的问题,且两种常见方法①做差比较大小②做商比较大小,均适用,具有代表性,同时考查了对数的运算及对底数的讨论,比较典型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设0<x<1,a、b为正常数,则
a2
x
+
b2
1-x
的最小值为(  )
A、4ab
B、2(a2+b2
C、(a+b)2
D、(a-b)2

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<x<1,a>0且a≠
13
,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设0<x<1,a>0且a≠1,比较|loga(1-x)|和|loga(1+x)|的大小;

(2)设a>0,x=
1
2
a
1
n
-a-
1
n
),试求(x+
1+x2
)
n
的值.

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修一3.2对数函数练习卷(二)(解析版) 题型:解答题

设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小.

 

查看答案和解析>>

同步练习册答案