精英家教网 > 高中数学 > 题目详情
建造一间占 地面积为12m²的背面靠墙的猪圈,底面为长方形,猪圈正面的造价为每平方米12元,侧面的造价为每平方米80元,屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问:如何设计能使猪圈的总 造价最低?最低总造价是多少?

试题分析:解:设猪圈底面正面的边长为xm,则其侧面边长为m---(2分)那么猪圈的总造价y=3x×120+3××80×2+112=360x++1120,---(3分)因为360x+≥2 =2880,---(2分)当且仅当360x=,即x=4时取“=”,(1分)所以当猪圈正面底边为4米侧面底边为3米时,总造价最低为4000元
点评:本小题主要考基本不等式在最值问题中的应用等基础知识,观察函数特点:为一个含有两个部分,这两部分的积为一个常数,求和的最值,所以利用基本不等式求最值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=1n(2ax+1)+-x2-2ax(a∈R).
(1)若y=f(x)在[4,+∞)上为增函数,求实数a的取值范围;
(2)当a=时,方程f(1-x)=有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).

(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为确保信息安全,需设计软件对信息加密,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文:对应密文:,当接收方收到密文14,9,23,28时,解密得到的明文为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列整数中,小于-3的整数是
A.-4  B.-2  C.0   D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在R上的偶函数,在区间上为增函数,且,则不等式的解集为( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

两县城A和B相距20km,现计划在两县城外,以AB为直径的半圆弧AB上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A与城B的影响度之和,记C点到城A的距离为,建在C处的垃圾处理厂对城A和城B的总影响度为,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在AB的中点时,对A和城B的总影响度为0.065。



(1)将表示成的函数;
(2)判断弧AB上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是否存在实数使的定义域为,值域为?若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案