精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|0<x<3},B={x|(x+2)(x-1)>0},则A∩B等于(  )
A.(0,3)B.(1,3)C.(2,3)D.(-∞,-2)∪(0,+∞)

分析 化简集合B,根据交集的定义写出A∩B.

解答 解:集合A={x|0<x<3},
B={x|(x+2)(x-1)>0}={x|x<-2或x>1},
所以A∩B={x|1<x<3}=(1,3).
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若两条直线2x-y=0与ax-2y-1=0互相垂直,则实数a的值为(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xoy中,A,B是圆x2+y2=4上的两个动点,且AB=2,则线段AB中点M的轨迹方程为x2+y2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,点$P(1,\frac{3}{2})$和动点Q(m,n)都在离心率为$\frac{1}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求椭圆的方程;
(2)若直线l的方程为3mx+4ny=0,点R(点R在第一象限)为直线l与椭圆的一个交点,点T在线段OR上,且QT=2.
①若m=-1,求点T的坐标;
②求证:直线QT过定点S,并求出定点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(ax2+$\frac{1}{x}$)6展开式的常数项为15,则实数a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的奇函数f(x)满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=x-1,则函数y=f(x)-log4|x|的零点个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若一圆弧长等于它所在圆的内接正三角形的边长,则该弧所对的圆心角弧度数为(  )
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在实数集R上的函数f(x)都可以写为一个奇函数g(x)与一个偶函数h(x)之和的形式,如果f(x)=2x+1,那么(  )
A.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$B.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$
C.$g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$D.$g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五点法”画出函数在一个周期内的图象;
(2)完整叙述函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的图象可以由函数f(x)=2sinx的图象经过两步怎样的变换得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
$\frac{1}{3}$x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y02020

查看答案和解析>>

同步练习册答案