【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标。分值权重表如下:
总分 | 技术 | 商务 | 报价 |
100% | 50% | 10% | 40% |
技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的。报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分。若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分。在某次招标中,若基准价为1000(万元)。甲、乙两公司综合得分如下表:
公司 | 技术 | 商务 | 报价 |
甲 | 80分 | 90分 | 分 |
乙 | 70分 | 100分 | 分 |
甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是
A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4
科目:高中数学 来源: 题型:
【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:
(I)证明:平面 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若点在棱上,满足, ,点在棱上,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(1)求证:BD⊥平面ACFE;
(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成的角的余弦值大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆:.
(Ⅰ)若圆C与x轴相切,求圆C的方程;
(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l方程为(m+2)x-(m+1)y-3m-7=0,m∈R.
(Ⅰ)求证:直线l恒过定点P,并求出定点P的坐标;
(Ⅱ)若直线l在x轴,y轴上的截距相等,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为,则下列结论中不正确的是( )
A. 若该大学某女生身高为170cm,则可断定其体重必为
B. 回归直线过样本点的中心
C. 若该大学某女生身高增加1cm,则其体重约增加
D. y与x具有正的线性相关关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)如图(1)所示,椭圆的中心在原点,焦点F1、F2在x轴上,A、B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率;
(2)如图(2)所示,双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,求此双曲线的离心率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com