精英家教网 > 高中数学 > 题目详情
20.直角△ABC,∠C=90°,若AC=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=4.

分析 利用平面向量数量积的定义得$\overrightarrow{AB}$•$\overrightarrow{AC}$=AB•AC•cosA,而AB•cosA=AC=2,从而计算出答案.

解答 解:∵AB•cosA=AC=2,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=AB•AC•cosA=AC2=4.
故答案为:4.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的公比q>1.且2(an+an+2)=5an+1,n∈N*
(I)求q的值;
(Ⅱ)若a32=a10,求数列{$\frac{{a}_{n}}{{3}^{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),则sin($\frac{π}{3}$-α)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设向量$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(1,3),若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则x的取值范围是{x|x>-$\frac{2}{3}$且x≠6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点O为圆心,以椭圆C的长半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的标准方程;
(2)过椭圆C的右焦点F作斜率为-$\frac{\sqrt{2}}{2}$的直线l交椭圆C于A、B两点,且$\overrightarrow{OA}$+$\overrightarrow{OD}$=$\overrightarrow{BO}$,又点D关于坐标原点O的对称点为点E,试问点A,B,D,E四点是否共圆?若是,求出该圆的标准方程;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=ax2+bx+c的图象过点(0,1),且有唯一的零点-1.
(I)求f(x)的表达式;
(Ⅱ)求函数F(x)=f(x)-7x,x∈[-2,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知分段函数f(x)=$\left\{\begin{array}{l}{{x}^{2}}&{x≤0}\\{2x-1}&{x>0}\end{array}\right.$,则下列正确的为(  )
A.f(2)=4B.f(2)=-4C.f(-2)=-5D.f(-2)=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{3}$-y2=1的右焦点为F,点E(0,1),点P(x,y)是双曲线C的渐近线上一点,O为原点,且$\overrightarrow{OP}$=λ$\overrightarrow{OF}$+$\overrightarrow{OE}$,则λ=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有(  )
A.∠ADE=20°B.∠ADE=30°C.∠ADE=$\frac{1}{3}$∠ADCD.∠ADE=$\frac{1}{2}$∠ADC

查看答案和解析>>

同步练习册答案