精英家教网 > 高中数学 > 题目详情
(2006•浦东新区模拟)(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)若曲线y=x+
p
x
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的取值范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
分析:(1)①根据f(3)<0,a>1构造不等式组,解不等式组,可得a的取值范围;
②由①中结论,可得a取(1,1.445)中的任意值都可以,进而给出合适的x0,即可得到答案.
(2)设曲线y=x+
p
x
上两个对称点为(m,n),(n,m),可得p=-2m2,进而得到实数p的取值范围;
(3)提出的问题是:当a∈(0,e-e)时,函数y=ax与y=logax的图象有3个交点;当a∈[e-e,1)时,函数y=ax与y=logax的图象有1个交点,进而根据(1)(2)的结论可进行推导论证.
解答:解:(1)①
f(3)<0
a>1    
a3-3<0
a>1  
⇒1<a<
33
…(4分)
②当a=1.1,x0=2时,f(x0)<0成立
注:a取(1,1.445)中的任意值都可以,相应的x0均给分…(6分)
(2)设曲线y=x+
p
x
上两个对称点为(m,n),(n,m),
于是
m+
p
m
=n
n+
p
n
=m
…(9分)
m+
p
m
+
p
m+
p
m
=m(p≠0)⇒p=-2m2
…(11分)
所以p<0;…(12分)
(3)提出的问题是:当a∈(0,e-e)时,函数y=ax与y=logax的图象有3个交点;当a∈[e-e,1)时,函数y=ax与y=logax的图象有1个交点.…(14分)
问题解决如下:显然,当0<a<1时,函数y=ax与y=logax的图象在直线y=x上有一个交点.…(15分)
若曲线y=ax上有两个点(m,n),(n,m)关于直线y=x对称,则
n=am
m=an
a=n
1
m
=m
1
n
lna=
1
m
lnn=
1
n
lnm
⇒mnlna=nlnn=mlnm,
即m,n是函数y=xlnx(0<x<1)与直线y=c(c为常数)的交点的横坐标.
因为函数f(x)=xlnx有如下性质:在区间(0,
1
e
]
上单调递减,在区间[
1
e
,1)
上单调递增.
于是x=
1
e
时f(x)=xlnx取得最小值-
1
e
,即-
1
e
≤xlnx<0
,由其图象可得到,当c∈(-
1
e
,0)
时,m,n成对出现,且
1
m
lnn=
1
n
lnm∈(-∞,-e)
.…(18分)
当lna<-e,即a∈(0,e-e)时,点(m,n),(n,m)存在,即函数y=ax与y=logax的图象有3个交点;
当lna≥-e,即a∈[e-e,1)时,点(m,n),(n,m)不存在,函数y=ax与y=logax的图象只有1个交点.…(20分)
点评:本题考查的知识点是指数函数的图象和性质,对数函数的图象和性质,反函数,具有相当的主观性,难度也比较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•浦东新区一模)函数y=a|x-1|,(0<a<1)的图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区一模)右面是某次测验成绩统计表中的部分数据.
学校 文科均分 理科均分
学校A 101.4 103.2
学校B 101.5 103.4
某甲说:B校文理平均分都比A校高,全体学生的平均分肯定比A校的高.
某乙说:两个学校文理的平均分不一样,全体学生的平均分可以相等.
某丙说:A校全体学生的均分可以比B校的高.
你同意他们的观点吗?我不同意
的观点,请举例
设x、y分别为A、B两校文科学生所占比例,满足y≥
18
19
x+
2
19
,即可以推翻甲的结论.比如:x=0.1,y=0.2,则两校全体学生均分相等.
设x、y分别为A、B两校文科学生所占比例,满足y≥
18
19
x+
2
19
,即可以推翻甲的结论.比如:x=0.1,y=0.2,则两校全体学生均分相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)已知函数f(x)=x2-2ax+a的定义域为(1,+∞),且存在最小值-2;(1)求实数a的值;(2)令g(x)=
f(x)x
,求函数y=g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)
lim
n→∞
(
1
2
+
1
4
+…+
1
2n
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•浦东新区模拟)计算:(1+i)2=
2i
2i

查看答案和解析>>

同步练习册答案