精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)用定义证明函数上是增函数;

(2)探究是否存在实数使得函数为奇函数?若存在,求出的值;若不存在,请说明理由;

3)在(2)的条件下,解不等式.

【答案】(1)见解析;(2)见解析;(3).

【解析】试题分析:(1)任取作差化简利用指数函数的单调性可得从而可得结论;(2)利用根据指数幂的运算法则化简可得从而可求得的值;(3)利用函数的奇偶性化简原不等式可得,利用函数的单调性化简可得解不等式即可的结果.

试题解析:(1)任取

在R上是增函数,且

,即函数上是增函数.

(2)是奇函数,则

,故.

时,是奇函数.

(3)在(2)的条件下,是奇函数,则由可得:

上是增函数,则得.

故原不等式的解集为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求的值;

(2)讨论方程的实数根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中是假命题的是

A. “昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿”此推理属于演绎推理.

B. “在平面中,对于三条不同的直线 ,若 ,将此结论放到空间中也成立” 此推理属于合情推理.

C. ”是“函数 存在极值”的必要不充分条件.

D. ,则的最小值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1, 2, 3, 4, 5, 6, 7, 8, 9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等 (如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________.

8

3

4

1

5

9

6

7

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

(2)证明: 上的增函数;

3)若对任意的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设函数,若在区间上单调,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,四边形是菱形, ,且 交于点 上任意一点.

(1)求证:

(2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程是,圆的参数方程是为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(1)分别求直线和圆的极坐标方程;

(2)射线(其中)与圆交于两点,与直线交于点,射线与圆交于两点,与直线交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案