精英家教网 > 高中数学 > 题目详情
7.函数f(x)在实数集R上连续可导,且2f(x)-f′(x)>0在R上恒成立,则以下不等式一定成立的是(  )
A.$f(1)>\frac{f(2)}{e^2}$B.$f(1)<\frac{f(2)}{e^2}$C.f(-2)>e3f(1)D.f(-2)<e3f(1)

分析 令g(x)=$\frac{f(x)}{{e}^{2x}}$,求出函数g(x)的导数,根据函数的单调性求出g(1)>g(2),判断答案即可.

解答 解:令g(x)=$\frac{f(x)}{{e}^{2x}}$,则g′(x)=$\frac{f′(x)-2f(x)}{{e}^{2x}}$,
而2f(x)-f′(x)>0在R上恒成立,
故g′(x)<0在R恒成立,g(x)在R递减,
故g(1)>g(2),即f(1)>$\frac{f(2)}{{e}^{2}}$,
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域为R,且$\frac{f'(x)}{2}-f(x)>2$,若f(0)=-1,则$\frac{f(x)+2}{{{e^{2x}}}}>1$不等式的解集是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1},则∁R(A∩B)=(  )
A.RB.(-∞,0]∪[2,+∞)C.[2,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.f(x)=3tanx的最小正周期为(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=2sinωx(ω>0)在区间(-$\frac{π}{6}$,$\frac{π}{3}$)上只有一个极值点,则ω的取值范围是(  )
A.1≤ω≤$\frac{3}{2}$B.$\frac{3}{2}$<ω≤3C.3≤ω<4D.$\frac{3}{2}$≤ω<$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'(x)>0,且g(-1)=0,则不等式f(x)g(x)>0的解集是(  )
A.(-1,0)∪(0,1)B.(-∞,1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为了响应国家号召,某企业节能降耗技术改造后,在生产某产品过程中的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如表所示:
x3456
y2.5344.5
若根据表中数据得出y关于x的线性回归方程为y=0.7x+a,若生产7吨产品,预计相应的生产能耗为5.25吨.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,其前n项和Sn满足关系式3t•Sn-(2t+3)•Sn-1=3t(t>0,n=2,3,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f($\frac{1}{{b}_{n-1}}$),n=(2,3,…),求bn
(3)求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,以Ox轴为始边,作两个角α,β,它们终边分别经过点P,Q,其中$P(\frac{1}{2},{cos^2}θ)$,Q(sin2θ,-1),θ∈R,且$sinα=\frac{4}{5}$.
(1)求cos2θ的值;
(2)求tan(α+β)的值.

查看答案和解析>>

同步练习册答案