精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知数列中,,其前项和满足).
(Ⅰ)求证:数列为等差数列,并求的通项公式;
(Ⅱ)设, 求数列的前项和 ;
(Ⅲ)设为非零整数,),试确定的值,使得对任意,有恒成立.

(Ⅰ). (Ⅱ)
(Ⅲ)存在,使得对任意,都有

解析试题分析:(1)利用数列的前n项和与通项an之间的关系,求出该数列的通项公式是解决本题的关键;注意分类讨论思想的运用;
(2)利用第一问中所求的公式表示出数列{bn}的通项公式,根据数列的通项公式选择合适的方法----错位相减法求出数列{bn}的前n项和Tn
(3)要使得即为,对于n分为奇数和偶数来得到。
解:(Ⅰ)由已知,),
),且
∴数列是以为首项,公差为1的等差数列.∴. …………4分
(Ⅱ)由(Ⅰ)知 它的前项和为

(Ⅲ)∵,∴

恒成立,
恒成立.
(ⅰ)当为奇数时,即恒成立当且仅当时,有最小值为1,∴
(ⅱ)当为偶数时,即恒成立当且仅当时,有最大值,∴.即,又为非零整数,则
综上所述,存在,使得对任意,都有.…………14分
考点:本试题主要考查了数列的前n项和与通项an之间的关系,考查等差数列的判定,考查学生分类讨论思想.运用数列的通项公式选取合适的求和方法求出数列{bn}的前n项和,体现了化归思想.
点评:解决该试题的关键是能将已知中前n项和关系式,通过通项公式与前n项和的关系得到通项公式的求解,并合理选用求和方法得到和式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在数列中,,并且对于任意n∈N*,都有
(1)证明数列为等差数列,并求的通项公式;
(2)设数列的前n项和为,求使得的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是等比数列的前项和,且
(Ⅰ)求数列的通项公式
(Ⅱ)若数列是单调递减数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知数列{}满足,
(I)写出,并推测的表达式;
(II)用数学归纳法证明所得的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求Sn=(x+)+(x2+)+…+(xn+)(y)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知曲线,数列的首项,且当时,点恒在曲线上,数列满足
(1)试判断数列是否是等差数列?并说明理由;
(2)求数列的通项公式;
(3)设数列满足,试比较数列的前项和与2的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,满足
(1)求
(2)令,求数列的前项和.
(3)设,若对任意的正整数,均有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某少数民族的刺绣有着悠久的历史,如下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.

(1)求出的值;
(2)利用合情推理的“归纳推理思想”,归纳出之间的关系式,并根据你得到的关系式求出的表达式;
(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下列四个不等式:
;②;③
恒成立的是(       ).

A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案