精英家教网 > 高中数学 > 题目详情

若命题,命题,则的(    )

A.必要不充分条件       B.充分不必要条件

C.充要条件             D.既不充分也不必要条件

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济宁一模)给出下列命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命题“若am2<bm2,则a<b”的逆命题是真命题;
③f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2*.则x<0时的解析式为f(x)=-2-x
④若随机变量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.
其中真命题的序号是
①③④
①③④
.(写出所有你认为正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给定四个结论:
(1)若命题p为“若a>b,则a2>b2”,则¬p为“若a>b,则a2≤b2”;
(2)若p∨q为假命题,则p、q均为假命题;
(3)x>1的一个充分不必要条件是x>2;
(4)“全等三角形的面积相等”的否命题是真命题.
其中正确的命题序号是
(1)(2)(3)
(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于命题有以下说法:
①陈述句是命题;
②“至少有一个实数x,使x3+1≤0”是真命题;
③命题“x、y、z不能同时大于0”的否定是“x、y、z同时大于0”;
④若p是真命题,q是假命题,则p∧q是真命题;
⑤若“mx-2>0”充要条件是“x-2>0”,则m=1.
其中正确说法的序号是
②③⑤
②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题(为虚数单位)中正确的是
①a,b∈R,若a>b,则a+i>b+i;
②当z是非零实数时,|z+
1
z
|≥2恒成立;
③复数z=(1-i)3的实部和虚部都是-2;
④如果|a+2i|<|-2+i|,则实数a的取值范围是-1<a<1;
⑤复数z1,z2与复平面的两个向量
OZ1
OZ2
相对应,则
OZ1
OZ2
=z1z2

其中正确的命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

同步练习册答案