精英家教网 > 高中数学 > 题目详情
1.设已知三条直线l1:mx-y+m=0,l2:x+my-m(m+1)=0,l3:(m+1)x-y+(m+1)=0,它们围成△ABC.
(1)求证:不论m为何值,△ABC有一个顶点为定点;
(2)当m为何值时,△ABC面积有最大值和最小值,并求此最大值与最小值.

分析 (1)联立方程得出l1,l3交于A(-1,0),l2,l3交于B(0,m+1)从而可以证明结论.
(2)首先根据条件得出角C为直角,从而得出S=$\frac{1}{2}$|AC|•|BC|,再利用点到直线的距离公式得出BC,AC,然后利用均值不等式求出,$\frac{1}{m+\frac{1}{m}}$的最值,即可得出结果.

解答 (1)证明:根据题意得 l1,l3交于A(-1,0)l2,l3交于B(0,m+1)
∴不论m取何值时,△ABC中总有一个顶点为定点(-1,0)
(2)解:从条件中可以看出l1、l2垂直
∴角C为直角,
∴S=$\frac{1}{2}$|AC|•|BC|
|BC|等于点(0,m+1)到l1的距离d=$\frac{|-m-1+m|}{\sqrt{{m}^{2}+1}}$=$\frac{1}{\sqrt{{m}^{2}+1}}$
|AC|等于(-1,0)到l2的距离d=$\frac{{m}^{2}+m+1}{\sqrt{{m}^{2}+1}}$
S=$\frac{1}{2}$×$\frac{{m}^{2}+m+1}{\sqrt{{m}^{2}+1}}$=$\frac{1}{2}$[1+$\frac{1}{m+\frac{1}{m}}$]
当m>0时,$\frac{1}{m+\frac{1}{m}}$有最大值$\frac{1}{2}$
同理,当m<0时,$\frac{1}{m+\frac{1}{m}}$有最小-$\frac{1}{2}$
∴m=1时S取最大值为$\frac{3}{4}$,m=-1时S取最小值$\frac{1}{4}$.

点评 本题考查了两条直线的交点坐标以及基本不等式的最值问题,此题有一定难度,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=$\sqrt{2}$,AA1=3,E为CD上一点,DE=1,EC=3.
(1)求BE和BC的长;
(2)证明:BE⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在xOy平面上有一系列点P1(x1,y1),P2(x2,y2),…Pn(xn,yn)对每个正整数n,点Pn位于函数y=x2(x≥0)的图象上,以点Pn为圆心的圆Pn与H轴都相切,且圆Pn与圆Pn+1又彼此外切.若x1=1,且xn+1<xn(n∈N+).
(1)求证:数列{$\frac{1}{{x}_{n}}$}是等差数列
(2)设圆Pn的面积为Sn,Tn=$\sqrt{{S}_{1}}$+$\sqrt{{S}_{2}}$+…+$\sqrt{{S}_{n}}$,求证:Tn<$\frac{3\sqrt{π}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=$\frac{x-1}{kx}$,其中k>0.
(1)设k=1,x>0,证明f(x)≥g(x).
(2)若函数q(x)=f(x)-g(x)-$\frac{x}{k}$在区间(1,2)上不单调,求k的取值范围;
(3)设函数p(x)=$\left\{\begin{array}{l}{f(x),}&{x>{e}^{2}}\\{-g(x)+a,}&{0<x<{e}^{2}}\end{array}$,若对任意给定的实数x1(x1∈(0,e2)∪(e2,+∞)),存在唯一的实数x2(x1≠x2,x2∈(0,e2)∪(e2,+∞)),使得p(x1)=p(x2)成立,求k与a满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下四个命题.:
①若$\underset{lim}{n→∞}$an存在,则$\underset{lim}{n→∞}$an2也存在;
②若$\underset{lim}{n→∞}$|an|存在,则$\underset{lim}{n→∞}$an也存在;
③若$\underset{lim}{n→∞}$an存在,则$\underset{lim}{n→∞}$$\frac{{a}_{n}}{{a}_{n}+1}$也存在.
④若$\underset{lim}{n→∞}$(an-bn),$\underset{lim}{n→∞}$(an+bn)存在,则$\underset{lim}{n→∞}$an与$\underset{lim}{n→∞}$bn都存在;
其中假命题的个数为 (  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=ax2+bx+c,(a>0),若f(-1)=f(3),则f(-1),f(1),f(4)的大小关系为 (  )
A.f(-1)<f(1)<f(4)B.f(1)<f(-1)<f(4)C.f(-1)<f(4)<f(1)D.f(4)<f(-1)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\left\{\begin{array}{l}{sin2x,x>\frac{π}{4}}\\{Ax,x≤\frac{π}{4}}\end{array}\right.$当A等于何值时,函数极限$\underset{lim}{x→\frac{π}{4}}$f(x)存在?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,集合A={x|2<x≤3},集合B={x|2≤x≤4},则(∁UA)∩B等于(  )
A.{x|3≤x≤4}B.{x|3<x≤4}C.{x|x=2或3<x≤4}D.{x|3<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的函数,其函数为f′(x),若f(x)+f′(x)<1,f(0)=2015,则不等式exf(x)-ex>2014(其中e为自然对数的底数)的解集为(  )
A.(2014,+∞)B.(-∞,0)∪(2014,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)

查看答案和解析>>

同步练习册答案