精英家教网 > 高中数学 > 题目详情

【题目】燕山公园计划改造一块四边形区域铺设草坪,其中百米,百米,,草坪内需要规划4条人行道以及两条排水沟,其中分别为边的中点.

1)若,求排水沟的长;

2)当变化时,求条人行道总长度的最大值.

【答案】1百米;(2百米.

【解析】

(1)由已知易得,则,在中分别由余弦定理可得,解方程组即可;

(2)设,设,则,在中,由正弦定理得,由余弦定理,同理,令,则,求出函数的最值即可.

1)因为

所以,所以

因为

所以

所以

中:

中:

由①②解得:,即排水沟BD的长为百米;

,设

中,由余弦定理得:

中,由正弦定理:,得

连接DE,在中,

中,由余弦定理:

同理:

,则

所以

由复合函数的单调性知,该函数单调递增,所以时,

最大值为

所以4条走道总长度的最大值为百米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法错误的是  

A. 棱柱的侧面都是平行四边形

B. 所有面都是三角形的多面体一定是三棱锥

C. 用一个平面去截正方体,截面图形可能是五边形

D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).

附参考公式:回归方程中最小二乘估计分别为

,相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

(1)将 的方程化为普通方程,并说明它们分别表示什么曲线?

(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点上,点的中点,求点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,已知平面平面,底面为梯形, ,且 在棱上且满足.

(1)求证: 平面

(2)求证: 平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径两点间的距离,现在珊瑚群岛上取两点,测得,则两点的距离为___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】掷红、白两颗骰子,事件A{红骰子点数小于3},事件B{白骰子点数小于3},求:

1PAB);

2PAB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(I)求f(x)在区间[1,a](a>1)上的最小值;

(II)若关于x的不等式f2(x)+mf(x)>0只有两个整数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧面底面分别为中点,

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案