【题目】甲乙二人进行定点投篮比赛,已知甲、乙两人每次投进的概率均为,两人各投一次称为一轮投篮.
求乙在前3次投篮中,恰好投进2个球的概率;
设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量,求的分布列与期望.
科目:高中数学 来源: 题型:
【题目】某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
贷款(亿元) | 50 | 60 | 70 | 80 | 100 |
(1)将上表进行如下处理:,
得到数据:
1 | 2 | 3 | 4 | 5 | |
0 | 1 | 2 | 3 | 5 |
试求与的线性回归方程,再写出与的线性回归方程.
(2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.
参考公式:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列事件是随机事件的是( )
①当x>10时,; ②当x∈R,x2+x=0有解
③当a∈R关于x的方程x2+a=0在实数集内有解; ④当sinα>sinβ时,α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某区有一块空地,其中,,.当地区政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场.为安全起见,需在的周围安装防护网.
(1)当时,求防护网的总长度;
(2)若要求挖人工湖用地的面积是堆假山用地的面积的倍,试确定的大小;
(3)为节省投入资金,人工湖的面积要尽可能小,问如何设计施工方案,可使的面积最小?最小面积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上一个圆可以将平面分成两个部分,两个圆最多可以将平面分成4个部分,设平面上个圆最多可以将平面分成个部分.
求,的值;
猜想的表达式并证明;
证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.
(Ⅰ)将曲线的直角坐标方程化为极坐标方程;
(Ⅱ)设点的直角坐标为,直线与曲线的交点为、,求的取值范围.
【答案】(I);(II).
【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.
试题解析:(Ⅰ)由及,得,即
所以曲线的极坐标方程为
(II)将的参数方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范围是.
【题型】解答题
【结束】
23
【题目】已知、、均为正实数.
(Ⅰ)若,求证:
(Ⅱ)若,求证:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com