精英家教网 > 高中数学 > 题目详情
下列几个命题,其中正确的命题有______.(填写所有正确命题的序号)
①函数y=log2(x-3)+2的图象可由y=log2x的图象向上平移2个单位,向右平移3个单位得到;
②函数f(x)=
2x-3
x+1
的图象关于点(1,2)成中心对称;
③在区间(0,+∞)上函数y=x
1
2
的图象始终在函数y=x的图象上方;
④任一函数图象与垂直于x轴的直线都不可能有两个交点.
①将y=log2x的图象向上平移2个单位,得到y=log2x+2的图象,再将所得图象向右平移3个单位得到y=log2(x-3)+2的图象,故①正确;
②函数f(x)=
2x-3
x+1
=
2(x+1)-5
x+1
=2-
5
x+1
,此函数是由反比例函数y=-
5
x
向左平移一个单位,再向上平移2个单位得到的,由反比例函数的对称中心为(0,0)知,此函数的对称中心为(-1,2),故②错误;
③∵点(0,0),(1,1)是函数y=x
1
2
的图象与函数y=x的图象的两个交点,且
2
1
2
,故③错误;
④由函数的定义,对于定义域内的任意一个x,由唯一的一个函数值与其对应,故任一函数图象与垂直于x轴的直线都不可能有两个交点.④正确
故答案为①④
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

下列命题:
G=
ab
是a,G,b成等比数列的充分不必要条件;
②若角α,β满足cosαcosβ=1,则sin(α+β)=0;
③“若x2+y2≠0,则x,y不全为零”的否命题;
④“若m>0,则x2+x-m=0有实根”的逆否命题;
⑤命题“存在x0∈R,2x0<0”的否定是“对任意的x0∈R,2x0>0”.
其中正确的命题的序号是______(把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是______(写出所有正确命题的编号).
①当0<CQ<
1
2
时,S为四边形
②当CQ=
1
2
时,S为等腰梯形
③当CQ=
3
4
时,S与C1D1的交点R满足C1R=
1
3

④当
3
4
<CQ<1时,S为六边形
⑤当CQ=1时,S的面积为
6
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从平面外一点向平面引一条垂线和三条斜线,若这些斜线与平面成等角,则如下四个命题中:
①三斜足构成正三角形;
②垂足是斜足三角形的内心;
③垂足是斜足三角形的外心;
④垂足是斜足三角形的垂心.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出定义:若m-
1
2
<x≤m+
1
2
(m∈Z),则称m为离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的五个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)是周期函数,最小正周期为1;
③函数y=f(x)在[-
1
2
1
2
]
上是增函数;
④函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
⑤函数y=f(x)的图象关于点(k,0)(k∈Z)对称.
其中正确的命题有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列结论:
①若命题p:?x∈R,tanx=1,命题q:?x∈R,x2-x+1>0,则命题“p∧q“是假命题 
②a+b>0成立的必要条件是a>0,b>0 
③若点O和点F分别为椭圆
x2
4
+
y2
3
=1
的中心和左焦点,点P为椭圆上任一点,则
OP
FP
的最大值为6 
④五进制的数412化为十进制的数为106 
⑤已知函数f(x)在(-∞,+∞)为增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
则其中正确结论的序号为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①若A,B是锐角△ABC的两内角,则有sinA>cosB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③如果
sinα-2cosα
3sinα+5cosα
=-5,那么tanα的值为-
23
16

④存在实数x,使得等式sinx+cosx=
3
2
成立;
⑤若0<x≤1,则
sin2x
x2
sinx
x

其中正确的命题为______(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,二次函数f(x)=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(-1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2-4ac>0.其中正确的结论是(  )
A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中,正确的是(  )
A.“?x∈Q,x2-5=0”的否定是假命题
B.“?x∈R,x2+1<1”的否定是“?x∈R,x2+1<1”
C.“2≤2”是真命题
D.“?x∈R,x2+1≠0”的否定是真命题

查看答案和解析>>

同步练习册答案