【题目】某车间租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品8件和B类产品15件,乙种设备每天能生产A类产品10件和B类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A类产品100件,B类产品200件,所需租赁费最少为__元
科目:高中数学 来源: 题型:
【题目】求解下列各题.
(1)已知,且为第一象限角,求,;
(2)已知,且为第三象限角,求,;
(3)已知,且为第四象限角,求,;
(4)已知,且为第二象限角,求,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩与物理成绩如下表:
数据表明与之间有较强的线性关系.
(1)求关于的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为和,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数,.
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.
(1)求证:直线恒过定点;
(2)当直线被圆截得的弦长最短时,求直线的方程;
(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形, , ,平面底面, 为的中点, , 是棱上的点.
(1)求证:平面平面;
(2)若, , ,异面直线与所成角的余弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,的直角边OA在x轴上,顶点B的坐标为,直线CD交AB于点,交x轴于点.
(1)求直线CD的方程;
(2)动点P在x轴上从点出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标中xOy,圆C1:x2+y2=8,圆C2:x2+y2=18,点M(1,0),动点A、B分别在圆C1和圆C2上,满足,则的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,椭圆: 的离心率为,直线l:y=2上的点和椭圆上的点的距离的最小值为1.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 已知椭圆的上顶点为A,点B,C是上的不同于A的两点,且点B,C关于原点对称,直线AB,AC分别交直线l于点E,F.记直线与的斜率分别为, .
① 求证: 为定值;
② 求△CEF的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com