精英家教网 > 高中数学 > 题目详情

【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,下列结论中正确的是( )

A. B.

C. 是数列中的最大值 D. 数列无最小值

【答案】D

【解析】

根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到 进而得到B正确;由前n项积的性质得到是数列中的最大值;开始后面的值越来越小,但是都是大于0的,故没有最小值.

因为条件:,可知数列>1,0<q<1,

根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到 ,故B不对;

项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值. 数列无最小值,因为开始后面的值越来越小,但是都是大于0的,故没有最小值.D正确.

故答案为:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程是为参数)以原点为极点, 轴正半轴为极轴,并取与直角坐标系相同的单位长度,建立极坐标系,曲线的极坐标方程是.

(1)求曲线 的直角坐标方程;

(2)若分别是曲线上的任意点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提升城市道路通行能力,可为市民提供更多出行便利.我校某研究性学习小组对成都市一中心路段(限行速度为千米/小时)的拥堵情况进行调查统计,通过数据分析发现:该路段的车流速度(/千米)与车流密度(千米/小时)之间存在如下关系:如果车流密度不超过该路段畅通无阻(车流速度为限行速度);当车流密度在时,车流速度是车流密度的一次函数;车流密度一旦达到该路段交通完全瘫痪(车流速度为零).

1)求关于的函数

2)已知车流量(单位时间内通过的车辆数)等于车流密度与车流速度的乘积,求此路段车流量的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人数

4

5

8

5

3

年龄

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人数

6

7

3

5

4

经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.

(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;

(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学写出三个不等式:::,然后将的值告诉了乙、丙、丁三位同学,要求他们各用一句话来描述,以下是甲、乙、丙、丁四位同学的描述:

乙:为整数;

丙:成立的充分不必要条件;

丁:成立的必要不充分条件;

甲:三位同学说得都对,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某船在处测得灯塔在其南偏东方向上,该船继续向正南方向行驶5海里到处,测得灯塔在其北偏东方向上,然后该船向东偏南方向行驶2海里到处,此时船到灯塔的距离为多少海里( )

A.千米B.千米C.6千米D.5千米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,下列结论中正确的是( )

A. B.

C. 是数列中的最大值 D. 数列无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,(为常数),.曲线在点处的切线与轴平行

(1)的值;

(2)的单调区间和最小值;

(3)对任意恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案