精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是( )

A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

C. 垂直于同一条直线的两条直线相互垂直

D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行

【答案】B

【解析】

在A中,另一条也与这个平面平行或者包含于这个平面;在B中,利用线面平行的判定定理和性质定理可判断B正确;在C中,垂直于同一条直线的两条直线相交、平行或异面;在D中,这两条直线相交、平行或异面.

在A中,如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行或者包含于这个平面,故A错误;

在B中,设平面,由线面平行的性质定理,在平面内存在直线

在平面内存在直线,所以由平行公理知

从而由线面平行的判定定理可证明,进而由线面平行的性质定理证明得,从而,故B正确;

在C中,垂直于同一条直线的两条直线相交、平行或异面,故C错误;

在D中,若两条直线与第三条直线所成的角相等,则这两条直线相交、平行或异面,故D错误.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的左、右焦点分别为F1、F2 , A为椭圆E的右顶点,B,C分别为椭圆E的上、下顶点.线段CF2的延长线与线段AB交于点M,与椭圆E交于点P.
(1)若椭圆的离心率为 ,△PF1C的面积为12,求椭圆E的方程;
(2)设S =λS ,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点,曲线上任意一点满足

(1)的方程;

(2)动点 在曲线上,是曲线处的切线.问:是否存在定点使得都相交,交点分别为,且的面积之比为常数?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点.

(1)若点是圆上任意一点,求

(2)过圆 上任意一点 与点的直线,交圆于另一点,连接,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知x0= 是函数f(x)=sin(2x+φ)的一个极大值点,则f(x)的一个单调递减区间是(
A.(
B.(
C.( ,π)
D.( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,建设生态文明是中华民族永续发展的千年大计.而清洁能源的广泛使用将为生态文明建设提供更有力的支撑.沼气作为取之不尽、用之不竭的生物清洁能源,在保护绿水青山方面具有独特功效.通过办沼气带来的农村“厕所革命”,对改善农村人居环境等方面,起到立竿见影的效果.为了积极响应国家推行的“厕所革命”,某农户准备建造一个深为2米,容积为32立方米的长方体沼气池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,沼气池盖子的造价为3000元,问怎样设计沼气池能使总造价最低?最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣mx(m∈R). (Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有 >1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OAOA//BC),则8min后该盛水筒到水面的距离为____m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的图像在点处的切线方程;

(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

同步练习册答案