精英家教网 > 高中数学 > 题目详情
4.若函数y=f(x)的定义域是[0,3],则函数g(x)=$\frac{f(x+1)}{x-2}$的定义域是[-1,2).

分析 利用函数的定义域,列出不等式组求解即可.

解答 解:函数y=f(x)的定义域是[0,3],
要使函数g(x)=$\frac{f(x+1)}{x-2}$有意义,
可得$\left\{\begin{array}{l}0≤x+1≤3\\ x-2≠0\end{array}\right.$,
解得:-1≤x<2.
函数g(x)=$\frac{f(x+1)}{x-2}$的定义域是[-1,2).
故答案为:[-1,2).

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知命题p:函数f(x)=2x2-2(2m+1)x-6m(m-1)(x∈R)的图象在(-1,5)上恰有一个零点;命题q:函数g(x)=x5-m在(0,+∞)上是减函数,如果p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{ln(x-1)}{\sqrt{4-x}}$的定义域为(  )
A.[1,4]B.(1,4)C.[2,4]D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x-1},x≥1}\end{array}\right.$,对任意x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,则实数a的取值范围是(  )
A.(0,1)B.($\frac{2}{7}$,$\frac{1}{3}$)C.[$\frac{2}{7}$,$\frac{1}{3}$)D.[$\frac{2}{7}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:$\root{3}{5+2\sqrt{13}}$+$\root{3}{5-2\sqrt{13}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}共有40项,且$\frac{{S}_{奇}}{{S}_{偶}}$=$\frac{3}{5}$,公差d=2,则a1=-35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.比较下列各组数的大小.
(1)(-1.1)${\;}^{\frac{3}{5}}$,(-1.1)${\;}^{\frac{5}{7}}$;
(2)1.9,-1.9-3
(3)0.7${\;}^{2-\sqrt{3}}$,0.70.3
(4)0.60.4,0.40.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求和:12-32+52-72+…+(-1)n+1(2n-1)2=$\left\{\begin{array}{l}{-2{n}^{2},n为偶数}\\{2{n}^{2}-1,n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.不等式ax2+5x-4<0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案