精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)递增区间;
(2)求f(x)的对称轴方程;
(3)求f(x)的最大值并写出取最大值时自变量x的集合.

【答案】
(1)解:函数f(x)=1+2sinxcosx+2cos2x=sin2x+cos2x+1= sin(2x+ )+2.

+2kπ≤2x+ +2kπ,解得 ≤x≤ +kπ(k∈Z),

∴f(x)递增区间为[ +kπ](k∈Z)


(2)解:由2x+ =kπ+ ,解得x= + (k∈Z),

∴f(x)的对称轴方程为:x= + (k∈Z)


(3)解:当2x+ =2kπ+ ,解得x=kπ+ (k∈Z),f(x)max= +2.

∴f(x)取最大值时自变量x的集合为{x|x=kπ+ (k∈Z)}


【解析】(1)利用倍角公式、和差公式可得函数f(x)= sin(2x+ )+2.令 +2kπ≤2x+ +2kπ,解出即可得出f(x)递增区间.(2)由2x+ =kπ+ ,解出x即可得出.(3)当2x+ =2kπ+ ,解得x=kπ+ (k∈Z),可得f(x)max= +2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某产品的历史收益率的频率分布直方图如图所示:

(1)试计算该产品收益率的中位数;

(2)若该产品的售价(元)与销量(万件)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组的对应数据:

售价(元)

25

30

38

45

52

销量(万份)

7.5

7.1

6.0

5.6

4.8

据此计算出的回归方程为,求的值;

(3)若从上述五组销量中随机抽取两组,求两组销量中恰有一组超过6万件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在正方形ABCD中,点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.

(1)求证:平面PBD⊥平面BFDE;

(2)求二面角P﹣DE﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex (e为自然对数的底数).
(1)求函数y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈(﹣1,+∞)时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移φ(φ>0)个单位后,所得到的图象对应的函数为奇函数,则φ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣ x2+(a﹣1)x+lnx.
(1)若a>﹣1,求函数f(x)的单调区间;
(2)若g(x)= x2+(1﹣2a)x+f(x)有且只有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设要抽查某企业生产的某种品牌的袋装牛奶的质量是否达标,现从700袋牛奶中抽取50袋进行检验.利用随机数表抽取样本时,先将700袋牛奶按001,002,…,700进行编号,如果从随机数表第3行第1组数开始向右读,最先读到的5袋牛奶的编号是614,593,379,242,203,请你以此方式继续向右读数,随后读出的3袋牛奶的编号是 . (下列摘取了随机数表第1行至第5行)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某学校组织的一次智力竞赛中,比赛共分为两个环节,其中第一环节竞赛题有A、B两组题,每个选手最多有3次答题机会,答对一道A组题得20分,答对一道B组题得30分.选手可以任意选择答题的顺序,如果前两次得分之和超过30分即停止答题,进入下一环节比赛,否则答3次.某同学正确回答A组题的概率都是p,正确回答B组题的概率都是 ,且回答正确与否相互之间没有影响.该同学选择先答一道B组题,然后都答A组题.已知第一环节比赛结束时该同学得分超过30分的概率为
(1)求p的值;
(2)用ξ表示第一环节比赛结束后该同学的总得分,求随机变量ξ的数学期望;
(3)试比较该同学选择都回答A组题与选择上述方式答题,能进入下一环节竞赛的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是(  )
A.假设n=k(k∈N*)时命题成立,证明n=k+1时命题也成立
B.假设n=k(k是正奇数)时命题成立,证明n=k+1时命题也成立
C.假设n=k(k是正奇数)时命题成立,证明n=k+2时命题也成立
D.假设n=2k+1(k∈N)时命题成立,证明n=k+1时命题也成立

查看答案和解析>>

同步练习册答案