精英家教网 > 高中数学 > 题目详情
3.一质点按规律S(t)=2t3+1运动,则t=1时的瞬时速度为(  )
A.6B.5C.4D.3

分析 由导数的物理意义即可得出.

解答 解:∵s(t)=2t3+1,∴v=s′(t)′=6t2,∴t=1时瞬时速度v=6×12=6.
故选:A.

点评 正确理解导数的物理意义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex[$\frac{1}{3}$x3-2x2+(a+4)x-2a-4],其中a∈R,e为自然对数的底数.
(1)若函数f(x)的图象在x=0处的切线与直线x+y=0垂直,求a的值;
(2)关于x的不等式f(x)<-$\frac{4}{3}$ex在(-∞,2)上恒成立,求a的取值范围;
(3)讨论函数f(x)极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{3^{x+1}}(x≤0)\\{log_2}x(x>0)\end{array}$,则不等式f(x)>3的解集为(  )
A.(8,+∞)B.(-∞,0)∪(8,+∞)C.(0,8)D.(-∞,0)∪(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C:x2+y2+4x-6y-3=0.
(1)求过点M(-6,-5)的圆C的切线方程;
(2)过点N(1,3)作直线与圆C交于A、B两点,求△ABC的最大面积及此时直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在△ABC中,AB=2,BC=3,∠ABC=60°,AH⊥BC于点H,M为AH的中点,若$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$,则λ+μ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l过圆(x-2)2+(y+2)2=25内一点M(2,2),则l被圆截得的弦长恰为整数的直线共有(  )
A.8条B.7条C.6条D.5条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且AB=AC=$\frac{1}{2}$PA=1,点E是PD的中点.
(1)求PB与EC所成角的余弦值;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式tanx>1的解集为$\{x|kπ+\frac{π}{4}<x<kπ+\frac{π}{2},k∈Z\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=Asin(ωx-φ)+m(A>0,ω>0,0<φ<$\frac{π}{2}$)的最大值为3,最小值为-1,其图象两条对称轴之间的最短距离为$\frac{π}{2}$,且f($\frac{π}{2}$)=1.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x+$\frac{π}{12}$)-f(x+$\frac{π}{4}$)的单调递减区间.

查看答案和解析>>

同步练习册答案