精英家教网 > 高中数学 > 题目详情
20.某高校有正教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本,已知从讲师中抽取人数为16人,那么n=72.

分析 先求出每个个体被抽到的概率,用总体数量乘以每个个体被抽到的概率就等于容量n的值.

解答 解:每个个体被抽到的概率为$\frac{16}{80}$=$\frac{1}{5}$,则n=(120+100+80+60)×$\frac{1}{5}$=72,
故答案为72

点评 本题考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知cos(θ+$\frac{5π}{12}$)=-$\frac{\sqrt{2}}{2}$,且θ为锐角,则cos($\frac{π}{4}$-θ)的值为(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{x-1≥0}\\{y-1≥0}\end{array}\right.$,则$\frac{x+y}{x}$的取值范围是[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.72B.76C.80D.88

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$a={5^{{{log}_3}3.4}},b={5^{{{log}_4}3.6}},c={(\frac{1}{5})^{{{log}_3}0.3}}$,则(  )
A.c>a>bB.b>a>cC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果一个三角形最大角是最小角的2倍,且三边是连续的自然数,则这个三角形的边长分别为(  )
A.2,3,4B.3,4,5C.4,5,6D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足(-1+3i)z=2(1+i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-2xlnx+x2-2ax+a2.记g(x)为f(x)的导函数.
(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+y+3=0,求a的值;
(2)讨论g(x)=0的解的个数;
(3)证明:对任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为B,右焦点为F,∠OFB=30°,P为线段BF的中点,且线段OP长为1.
(Ⅰ)试确定椭圆C的方程;
(Ⅱ)若直线l与圆E:x2+y2=3相切且交椭圆C于M,N两点,求△OMN面积的取值范围.

查看答案和解析>>

同步练习册答案