ÍÖÔ²EµÄÖÐÐÄÔÚÔ­µãO£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊe=
2
3
£¬¹ýµãC£¨-1£¬0£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇÒÂú×㣺
CA
=¦Ë
BC
£¨¦Ë¡Ý2£©£®
£¨1£©Èô¦ËΪ³£Êý£¬ÊÔÓÃÖ±ÏßlµÄбÂÊk£¨k¡Ù0£©±íʾÈý½ÇÐÎOABµÄÃæ»ý£»
£¨2£©Èô¦ËΪ³£Êý£¬µ±Èý½ÇÐÎOABµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨3£©Èô¦Ë±ä»¯£¬ÇÒ¦Ë=k2+1£¬ÊÔÎÊ£ºÊµÊý¦ËºÍÖ±ÏßlµÄбÂÊk£¨k¡ÊR£©·Ö±ðΪºÎֵʱ£¬ÍÖÔ²EµÄ¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¿²¢Çó³ö´ËʱµÄÍÖÔ²·½³Ì£®
ÉèÍÖÔ²·½³ÌΪ£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬
ÓÉe=
c
a
=
2
3
¼°a2=b2+c2µÃa2=3b2£¬
¹ÊÍÖÔ²·½³ÌΪx2+3y2=3b2¢Ù
£¨1£©¡ßÖ±ÏßL£ºy=k£¨x+1£©½»ÍÖÔ²ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬
²¢ÇÒ
CA
=¦Ë
BC
£¨¦Ë¡Ý2£©
¡à£¨x1+1£¬y1£©=¦Ë£¨-1-x2£¬-y2£©£¬
¼´
x1+1=-¦Ë(x2+1)
y1=-¦Ëy2
¢Ú
°Ñy=k£¨x+1£©´úÈëÍÖÔ²·½³Ì£¬
µÃ£º£¨3k2+1£©x2+6k2x+3k2-3b2=0£¬ÇÒ¡÷=k2£¨3b2-1£©+b2£¾0£¬
¡àx1+x2=-
6k2
3k2+1
¢Ûx1x2=
3k2-3b2
3k2+1
¢Ü
¡àS¡÷OAB=
1
2
1+k2
|x1-x2|
|k|
1+k2
=
1
2
|k||x1-x2|=
|¦Ë+1|
2
|k||x2+1|

ÁªÁ¢¢Ú¡¢¢ÛµÃ£ºx2+1=
2
(1-¦Ë)(3k2+1)

¡àS¡÷OAB=
¦Ë+1
¦Ë-1
|k|
3k2+1
(k¡Ù0)

£¨2£©S¡÷OAB=
¦Ë+1
¦Ë-1
|k|
3k2+1
=
¦Ë+1
¦Ë-1
1
3|k|+
1
|k|
¡Ü
¦Ë+1
¦Ë-1
1
2
3
(¦Ë¡Ý2)

µ±ÇÒ½öµ±3|k|=
1
|k|
¼´k=¡À
3
3
ʱ£¬S¡÷OABÈ¡µÃ×î´óÖµ£®
´Ëʱx1+x2=-1£¬
ÓÖ¡ßx1+1=-¦Ë£¨x2+1£©£¬
¡àx1=
1
¦Ë-1
£¬x2=
-¦Ë
¦Ë-1
£¬´úÈë¢ÜµÃ£º3b2=
¦Ë2+1
(¦Ë-1)2

¹Ê´ËʱÍÖÔ²µÄ·½³ÌΪx2+3y2=
¦Ë2+1
(¦Ë-1)2
(¦Ë¡Ý2)

£¨3£©ÓÉ¢Ú£®¢ÛÁªÁ¢µÃ£ºx1=
-2¦Ë
(1-¦Ë)(3k2+1)
-1
£¬x2=
2
(1-¦Ë)(3k2+1)
-1
£¬½«x1£®x2´úÈë¢ÜµÃ£º3b2=
4¦Ë
(¦Ë-1)2(3k2+1)
+1
£¬
ÓÉk2=¦Ë-1
µÃ£º3b2=
4¦Ë
(¦Ë-1)2(3¦Ë-2)
+1=
4
3
[
1
(¦Ë-1)2
+
2
(¦Ë-1)2(3¦Ë-2)
]+1

Ò×Öª£ºµ±¦Ë¡Ý2ʱ£¬3b2ÊǦ˵ļõº¯Êý£¬
¹Êµ±¦Ë=2ʱ£¬£¨3b2£©max=3£®
¹Êµ±¦Ë=2£¬
k=¡À1ʱ£¬ÍÖÔ²¶Ì°ëÖ᳤ȡµÃ×î´óÖµ£¬´ËʱÍÖÔ²·½³ÌΪx2+3y2=3£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÀëÐÄÂÊΪ
3
2
µÄÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾o£©¹ýµãM£¨2£¬1£©£¬OΪ×ø±êÔ­µã£¬Æ½ÐÐÓÚOMµÄÖ±Ïßl½»ÍÖÔ²ÓÚC²»Í¬µÄÁ½µãA£¬B£®
£¨1£©ÇóÍÖÔ²µÄC·½³Ì£®
£¨2£©Ö¤Ã÷£ºÈôÖ±ÏßMA£¬MBµÄбÂÊ·Ö±ðΪk1¡¢k2£¬ÇóÖ¤£ºk1+k2=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãFÊÇË«ÇúÏßC£ºx2-y2=2µÄ×󽹵㣬ֱÏßlÓëË«ÇúÏßC½»ÓÚA¡¢BÁ½µã£¬
£¨1£©ÈôÖ±Ïßl¹ýµãP£¨1£¬2£©£¬ÇÒ
OA
+
OB
=2
OP
£¬ÇóÖ±ÏßlµÄ·½³Ì£®
£¨2£©ÈôÖ±Ïßl¹ýµãFÇÒÓëË«ÇúÏßµÄ×óÓÒÁ½Ö§·Ö±ð½»ÓÚA¡¢BÁ½µã£¬Éè
FB
=¦Ë
FA
£¬µ±¦Ë¡Ê[6£¬+¡Þ£©Ê±£¬ÇóÖ±ÏßlµÄбÂÊkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¹ýÅ×ÎïÏßy2=4xµÄ½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬µãOÊÇ×ø±êÔ­µã£¬Èô|AF|=5£¬Ôò¡÷AOBµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®5B£®
5
2
C£®
3
2
D£®
17
8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÉèË«ÇúÏß·½³Ì
x2
a2
-
y2
b2
=1(b£¾a£¾0)
µÄ°ë½¹¾àΪc£¬Ö±Ïßl¹ý£¨a£¬0£©£¬£¨0£¬b£©Á½µã£¬ÒÑÖªÔ­µãµ½Ö±ÏßlµÄ¾àÀëΪ
3
4
c
£®
£¨1£©ÇóË«ÇúÏßµÄÀëÐÄÂÊ£»
£¨2£©¾­¹ý¸ÃË«ÇúÏßµÄÓÒ½¹µãÇÒбÂÊΪ2µÄÖ±Ïßm±»Ë«ÇúÏ߽صõÄÏÒ³¤Îª15£¬ÇóË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪˫ÇúÏß
x2
a2
-
y2
b2
=1(b£¾a£¾0)
£¬OΪ×ø±êÔ­µã£¬ÀëÐÄÂÊe=2£¬µãM(
5
£¬
3
)
ÔÚË«ÇúÏßÉÏ£®
£¨1£©ÇóË«ÇúÏߵķ½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëË«ÇúÏß½»ÓÚP£¬QÁ½µã£¬ÇÒ
OP
OQ
=0
£®ÎÊ£º
1
|OP|2
+
1
|OQ|2
ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇÇëÇó³ö¸Ã¶¨Öµ£¬Èô²»ÊÇÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªA£¨-3£¬0£©£¬B£¨3£¬0£©£®Èô¡÷ABCÖܳ¤Îª16£®
£¨1£©ÇóµãC¹ì¼£LµÄ·½³Ì£»
£¨2£©¹ýO×÷Ö±ÏßOM¡¢ON£¬·Ö±ð½»¹ì¼£LÓÚM¡¢Nµã£¬ÇÒOM¡ÍON£¬ÇóS¡÷MONµÄ×îСֵ£»
£¨3£©ÔÚ£¨2£©µÄÇ°ÌáϹýO×÷OP¡ÍMN½»ÓÚPµã£®ÇóÖ¤µãPÔÚ¶¨Ô²ÉÏ£¬²¢Çó¸ÃÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªF1£¬F2Ϊ˫ÇúÏß
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£®
£¨¢ñ£©ÈôµãPΪ˫ÇúÏßÓëÔ²x2+y2=a2+b2µÄÒ»¸ö½»µã£¬ÇÒÂú×ã|PF1|=2|PF2|£¬Çó´ËË«ÇúÏßµÄÀëÐÄÂÊ£»
£¨¢ò£©ÉèË«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡Àx£¬F2µ½½¥½üÏߵľàÀëÊÇ
2
£¬¹ýF2µÄÖ±Ïß½»Ë«ÇúÏßÓÚA£¬BÁ½µã£¬ÇÒÒÔABΪֱ¾¶µÄÔ²ÓëyÖáÏàÇУ¬ÇóÏ߶ÎABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÉèÅ×ÎïÏßC1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£¬ÒÔF1£¬F2Ϊ½¹µã£¬ÀëÐÄÂÊΪ
1
2
µÄÍÖÔ²C2ÓëÅ×ÎïÏßC1µÄÒ»¸ö½»µãΪP£®
£¨1£©ÈôÍÖÔ²µÄ³¤°ëÖ᳤Ϊ2£¬ÇóÅ×ÎïÏß·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±Ïßl¾­¹ýÍÖÔ²C2µÄÓÒ½¹µãF2£¬ÓëÅ×ÎïÏßC1½»ÓÚA1£¬A2Á½µã£¬Èç¹û|A1A2|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇólµÄбÂÊ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸