分析 (1)由周期求得ω,由函数g(x)为奇函数求得φ和b的值,从而得到函数f(x)的解析式.
(2)令 2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈z,求得x的范围,即可得到函数的增区间.同理,令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得x的范围,即可得到函数的减区间.
(3)通过x的范围求出2x+$\frac{π}{3}$∈[$\frac{π}{3}$,π],然后求出函数的最大值,即可推出m的范围.
解答 解:(1)∵$\frac{2π}{ω}$=π,∴ω=2,∴f(x)=sin(2x+φ)-b.
又g(x)=sin[2(x-$\frac{π}{6}$)+φ]-b+$\sqrt{3}$为奇函数,且0<φ<π,则φ=$\frac{π}{3}$,b=$\sqrt{3}$,
故f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$.
(2)令 2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈z,求得:-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ,(k∈Z),
故函数的增区间为[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ](k∈Z).
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈z,求得:$\frac{π}{12}$+kπ≤x≤$\frac{7π}{12}$+kπ,(k∈Z),
故函数的减区间为[$\frac{π}{12}$+kπ,$\frac{7π}{12}$+kπ](k∈Z).
(3)∵x∈[0,$\frac{π}{3}$],
∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,π],
∴f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$∈[-$\sqrt{3}$,1-$\sqrt{3}$],
∵f(x)≤-m恒成立,
∴m≤$\sqrt{3}$-1.
点评 本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,正弦函数的单调性,不等式的性质应用,函数的奇偶性,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com