精英家教网 > 高中数学 > 题目详情

设直线l的方程为:(m2-2m-3)x+(2m2+m-1)y=2m-6,根据下列条件分别确定实数m的值.

(1)l在x轴上的截距是-3;

(2)斜率是-1.

答案:
解析:


提示:

要熟悉直线方程的一般式与其他形式间的联系,要记清特殊形式的直线方程与一般形式的直线方程的转化条件.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F是椭圆的右焦点,以F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆的动点,P到两焦点距离之和等于4
(Ⅰ)求椭圆和圆的标准方程;
(Ⅱ)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3;
②斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l的方程为2x+(k-3)y+6=0(k≠3),根据下列条件分别确定k的值:
(1)直线l的斜率为-1;
(2)直线l在x轴与y轴上截距之和等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l的方程为(a+1)x+y+2-a=0(a∈R),若直线l不经过第二象限,则实数a的取值范围
(-∞,-1]
(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)设直线l的方程为y=kx-1,等轴双曲线C:x2-y2=a2(a>0)的中心在原点,右焦点坐标为( 
2
,0).
(1)求双曲线方程;
(2)设直线l与双曲线C的右支交于不同的两点A,B,记AB中点为M,求k的取值范围,并用k表示M点的坐标.
(3)设点Q(-1,0),求直线QM在y轴上截距的取值范围.

查看答案和解析>>

同步练习册答案