精英家教网 > 高中数学 > 题目详情

【题目】已知命题;命题关于的方程有两个相异实数根.

1)若为真命题,求实数的取值范围;

2)若为真命题,为假命题,求实数的取值范围.

【答案】1;(2.

【解析】

试题首先结合对数函数二次函数性质求解命题p,q为真命题时的m的取值范围,(1)中由为真命题可知pq真,由此解不等式可求得实数的取值范围;(2)中为真命题,为假命题可知两命题一真一假,分两种情况可分别求得m的取值范围

试题解析:令,则[0,2]上是增函数,

故当时,最小值为,故若为真,则. ……2

时,方程有两相异实数根,

……4

1)若为真,则实数满足

即实数的取值范围为……8

2)若为真命题,为假命题,则一真一假,

假,则实数满足

真,则实数满足.

综上所述,实数的取值范围为. ……12[来源:&

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,己知椭圆C的左、右顶点为AB,右焦点为F.过点A且斜率为k)的直线交椭圆C于另一点P.

1)求椭圆C的离心率;

2)若,求的值;

3)设直线l:,延长AP交直线l于点Q,线段BO的中点为E,求证:点B关于直线EF的对称点在直线PF上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区不同身高的未成年男孩的体重平均值如下表:

身高

60

70

80

90

100

体重

6.13

7.90

9.99

12.15

15.02

已知之间存在很强的线性相关性,

(1)据此建立之间的回归方程;

(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高体重为的在校男生的体重是否正常?

参考数据:

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的一个侧面为等边三角形,且平面平面,四边形是平行四边形,.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,且曲线处的切线与直线垂直.

(I)求函数在区间上的极大值;

(II)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为是椭圆上位于第一象限内的任意一点,为坐标原点,关于的对称点为,圆.

1)求椭圆和圆的标准方程;

2)过点与圆相切于点,使得点,点的两侧.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形,平面平面是边长为4的等边三角形,的中点.

(1)求证:

(2)若直线与平面所成角的正弦值为,求平面 与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案