【题目】如图,三棱柱中,,分别为,的中点.
(1)证明:直线平面;
(2),,,,求平面和平面所成的角(锐角)的余弦值.
【答案】(1)见解析(2)
【解析】
(1)设与交于点,通过证明是平行四边形证得,得线面平行;
(2)证明两两垂直,然后以为轴建立空间直角坐标系,设,写出各点坐标,求出两平面的法向量,利用法向量夹角的余弦得二面角的余弦.
证明:(1)设与交于点,连接,,
因为四边形是平行四边形,所以是的中点,
是的中点,所以,.
又因为是的中点,所以,.
所以且,所以四边形是平行四边形,
所以.又因为平面,平面,
所以直线平面.
(2)因为,所以平行四边形是菱形,所以.
又因为,所以.
又,且是的中点,所以.又因为,
所以,
所以,故,从而,,两两垂直.
以为坐标原点,,,所在直线分别为,,轴建立如图空间直角坐标系,
设,因为,,
所以是等边三角形,所以,,,.
,.
因为,,两两垂直,所以平面,
所以是平面的一个法向量;
设是平面的一个法向量,则
,即,令,得,,
所以,所以.
所以平面和平面所成的角(锐角)的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.
(1)求证:;
(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.
(1)求椭圆的方程;
(2)设过点的动直线与椭圆相交于,两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额(万元) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润增长(万元) | 6.0 | 7.0 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
(1)请用最小二乘法求出关于的回归直线方程(结果保留两位小数);
(2)现从2012—2018年这7年中抽出三年进行调查,记年利润增长-投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.
参考公式:,.
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数f(x)=,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长途车站P与地铁站O的距离为千米,从地铁站O出发有两条道路l1,l2,经测量,l1,l2的夹角为45°,OP与l1的夹角满足tan=(其中0<θ<),现要经过P修条直路分别与道路l1,l2交汇于A,B两点,并在A,B处设立公共自行车停放点.
(1)已知修建道路PA,PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A,B之间的距离;
(2)考虑环境因素,需要对OA,OB段道路进行翻修,OA,OB段的翻修单价分别为n元/千米和n元/千米,要使两段道路的翻修总价最少,试确定A,B点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py经过点(2,1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线与椭圆交于两点,是椭圆右顶点,已知直线的斜率为,的外接圆半径为.
(1)求椭圆的方程;
(2)若椭圆上有两点,使的平分线垂直,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com