精英家教网 > 高中数学 > 题目详情

【题目】(1)在中,内角的对边分别为,且,证明:

(2)已知结论:在直角三角形中,若两直角边长分别为,斜边长为,则斜边上的高.若把该结论推广到空间:在侧棱互相垂直的四面体中,若三个侧面的面积分别为,底面面积为,则该四面体的高之间的关系是什么?(用表示

【答案】(1)见解析.

(2) .

【解析】分析:(1)首先根据题中的条件,求得,从而可以将所要证明的式子转化,应用分析法证得结果;

(2)根据题中的条件,类比着平面三角形的面积,可以推出空间几何体三棱锥的体积对应的结果,在解题的过程中,注意将三棱锥的侧面面积分别写出来,应用体积公式以及各个方程之间的关系,从而求得结果.

详解:(1)证明:由,得,则.

要证

只需证

即证

只需证,即证.

显然成立,故.

(2)解:记该四面体的三条侧棱长分别为

不妨设

于是

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:

转速(转/秒)

8

10

12

14

16

每小时生产有缺点的零件数(件)

5

7

8

9

11

(1)如果有线性相关关系,求回归方程;

(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有1个,那么机器的运转速度应控制在什么范围内?参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,为等边三角形,是线段上的一点,且平面.

(1)求证:的中点;

(2)若的中点,连接,平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从圆C:(x+1)2+(y﹣2)2=2外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取最小值时点P的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐的单音色旋律,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.

(Ⅰ) 完成下列2×2列联表;

正误

年龄

正确

错误

合计

20~30

30

30~40

70

合计

120

(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且 .固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ex+2x2-3x.

(1)求证:函数f (x)在区间[0,1]上存在唯一的极值点.

(2)当x时,若关于x的不等式f (x)≥ x2+(a-3)x+1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程为

(1)当时,判断直线与圆的关系

2)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

同步练习册答案