【题目】如图,在四棱锥中,平面,四边形为正方形,点分别为线段上的点,.
(1)求证:平面平面;
(2)求证:当点不与点重合时,平面;
(3)当,时,求点到直线距离的最小值.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)首先运用正方形的性质与线在垂直的性质定理推出平面,然后利用面面垂直的判定定理即可使问题得证;(2)结合(1)与已知条件可推出,由此根据线面平行的判定定理使问题得证;(3)根据条件可推出的长就是点到的距离,从而运用点到线的距离的计算,借助转化与化归的数学思想来求解.
试题解析:(1)证明:在正方形中,.
因为平面,平面,所以.
又,平面,所以平面.
因为平面,所以平面平面.
(2)证明:由(1)知,平面,平面,.
在中,,,所以,
又平面,平面,
所以平面.
(3)解:因为,所以平面,
而平面,所以,所以的长就是点到的距离,
而点在线段上,所以到直线距离的最小值是到线段的距离,
在中,,,所以到直线的最小值为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,求数列{an}的通项公式及Sn的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量X~N(μ,σ2),且其正态曲线在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72≤X≤88)=0.682 6.
(1)求参数μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某渔场鱼群的最大养殖量为吨,为保证鱼群的生长空间,实际的养殖量要小于,留出适当的空闲量,空闲量与最大养殖量的比值叫空闲率,已知鱼群的年增加量(吨)和实际养殖量(吨)与空闲率的乘积成正比(设比例系数).
(1)写出与的函数关系式,并指出定义域;
(2)求鱼群年增长量的最大值;
(3)当鱼群年增长量达到最大值时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设实数满足不等式函数无极值点.
(1)若“”为假命题,“”为真命题,求实数的取值范围;
(2)已知“”为真命题,并记为,且,若是的必要不充分条件,求正整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一三角形地块的一角开辟为水果园种植桃树,已知角为,的长度均大于米,现在边界处建围墙,在处围竹篱笆.
(1)若围墙总 长度为米,如何围可使得三角形地块的面积最大?
(2)已知段围墙高米,段围墙高米,造价均为每平方米元.若围围墙用了元,问如何围可使竹篱笆用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的三内角A,B,C的对边分别是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若,,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com