精英家教网 > 高中数学 > 题目详情
已知点A(4,0)、B(0,4)、C(3cosα,3sinα).
(1)若α∈(0,π),且|
AC
|=|
BC
|,求α的大小;
(2)
AC
BC
,求
2sin2α+sin2α
1+tanα
的值
考点:三角函数的化简求值,向量的模
专题:三角函数的求值
分析:(1)直接利用|
AC
|=|
BC
|,列出方程求出α的正切函数值,然后求解α的大小;
(2)通过
AC
BC
,得到α的三角函数值,化简
2sin2α+sin2α
1+tanα
求解即可.
解答: 解:(1)点A(4,0)、B(0,4)、C(3cosα,3sinα).
α∈(0,π),且|
AC
|=|
BC
|,
可得:(3cosα-4)2+(3sinα-0)2=(3cosα)2+(3sinα-4)2
可得:-24cosα=-24sinα,
即tanα=1,∴α=
π
4

(2)
AC
=(3cosα-4,3sinα),
BC
=(3cosα,3sinα-4),
AC
BC
,可得:9cos2α-12cosα+9sin2α-12sinα=0,sinα+cosα=
3
4

∴1+2sinαcosα=
9
16
,∴2sinαcosα=-
7
16

2sin2α+sin2α
1+tanα
=
2sinα(sinα+cosα)cosα
cosα+sinα
=2sinαcosα=-
7
16
点评:本题考查两角和与差的三角函数,弦切互化,三角函数的化简求值,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(
1
4
x+(
1
2
x-1,x∈[0,+∞)的值域为(  )
A、(-
5
4
,1]
B、[-
5
4
,1]
C、(-1,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,其图象关于x=
5
6
π对称的是(  )
A、y=sin(x-
π
3
B、y=sin(x-
5
6
π
C、y=sin(x+
π
6
D、y=sin(x+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,且(a+i)2i为正实数,则a=(  )
A、1B、0C、-1D、0或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,E,F分别为BB1,AC的中点.
(1)求证:BF∥平面A1EC;
(2)若AB=AA1=2,求点A到平面A1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,矩形ABCD的边AB=a,BC=2,PA⊥平面ABCD,PA=2,现有数据:
①a=
3
2
;②a=1;③a=
3
;④a=2;⑤a=4;
(1)当在BC边上存在点Q,使PQ⊥QD时,a可能取所给数据中的哪些值?请说明理由;
(2)在满足(1)的条件下,a取所给数据中的最大值时,求直线PQ与平面ADP所成角的正值;
(3)记满足(1)的条件下的Q点为Qn(n=1,2,3,…),若a取所给数据的最小值时,这样的Q有几个?试求二面角Qn-PA-Qn+1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(-1,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是(  )
A、(-
2
3
B、(-
2
2
C、(-1,1)
D、(-
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产一种产品,由于受技术水平的限制,会产生一些次品,根据经验,其次品率Q与日产量x(万件)之间大体满足关系:Q=
1
2(12-x)
,1≤x≤a
1
2
,a<x≤11
,(其中a为常数,且1<a<11).
(注:次品率=次品数/生产量,如P=0.1表示每生产10件产品,有1件为次品,其余为合格品).已知每生产1万件合格的产品可以盈利2万元,但每生产1万件次品将亏损1万元.
(Ⅰ)试将生产这种产品每天的盈利额P(x)(万元)表示为日产量x(万件)的函数;
(Ⅱ)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A(3,-1),∠B的内角平分线所在的直线的方程是x+y-8=0,AB边上中线所在的直线的方程是x-3y+3=0,求BC边所在直线的方程.

查看答案和解析>>

同步练习册答案