精英家教网 > 高中数学 > 题目详情
定义y=log(1+x)F(x,y),x、y∈(0,+∞),
(Ⅰ)令函数f(x)=F(x,2)-3x,过坐标原点O作曲线C:y=f(x)的切线l,切点为P(n,t)(n>0),设曲线C与l及y轴围成图形的面积为S,求S的值.
(Ⅱ)令函数g(x)=F(x,2)+alnx,讨论函数g(x)是否有极值,如果有,说明是极大值还是极小值.
(Ⅲ)证明:当x,y∈N*且x<y时,F(x,y)>F(y,x).
【答案】分析:(I)先确定切线方程,再利用定积分知识求面积;
(II)求导函数,确定函数的单调性,从而可求函数的极值;
(III)令,证明h(x)在[1,+∞)上单调递减,1≤x<y时,,从而可得结论.
解答:(I)解:∵y=log(1+x)F(x,y),x、y∈(0,+∞),
∴f(x)=x2-x+1,x∈(0,+∞),∴A(0,1),f′(x)=2x-1
∵过坐标原点O作曲线C:y=f(x)的切线l,切点为P(n,t)(n>0),

∴P(1,1),∴切线l的方程为y=x,

(II)解:∵g(x)=(1+x)2+alnx,x∈(0,+∞)

①△=4-8a≤0,即时,g′(x)≥0,
∴g(x)在(0,+∞)上单调递增,从而没有极值;
②当△=4-8a>0即时,方程2x2+2x+a=0有二个不等实根
,则x1<0,x2≤0,g'(x)>0,
∴g(x)在(0,+∞)上单调递增,从而没有极值;
若a<0,则x1<0,x2>0,函数在(0,x2)上,g'(x)<0,单调递减,在(x2,+)上,g'(x)>0,单调递增
∴x=x2,g(x)有极小值,没有极大值;
(III)证明:令,则
令p(x)=,则
∴p(x)在(0,+∞)上单调递减
∴x>0时,p(x)<p(0)=0
∴x≥1时,h′(x)<0
∴h(x)在[1,+∞)上单调递减
∴1≤x<y时,
∴yln(1+x)>xln(1+y)
∴(1+x)y>(1+y)x
∴F(x,y)>F(y,x).
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与极值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义y=log(1+x)F(x,y),x、y∈(0,+∞),
(Ⅰ)令函数f(x)=F(x,2)-3x,过坐标原点O作曲线C:y=f(x)的切线l,切点为P(n,t)(n>0),设曲线C与l及y轴围成图形的面积为S,求S的值.
(Ⅱ)令函数g(x)=F(x,2)+alnx,讨论函数g(x)是否有极值,如果有,说明是极大值还是极小值.
(Ⅲ)证明:当x,y∈N*且x<y时,F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的单调函数y=f(x),当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并写出适合条件的函数f(x)的一个解析式;
(2)数列{an}满足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通项公式an的表达式;
②令bn=(
1
2
)anSn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn
4
3
Tn
的大小,并加以证明;
③当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
对于不小于2的正整数n恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义新运算“&”与“*”:x&y=xy-1,x*y=log(x-1)y,则函数f(x)=
(x&3)+1
3*2x
是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义y=log(1+x)F(x,y),x、y∈(0,+∞),
(Ⅰ)令函数f(x)=F(x,2)-3x,过坐标原点O作曲线C:y=f(x)的切线l,切点为P(n,t)(n>0),设曲线C与l及y轴围成图形的面积为S,求S的值.
(Ⅱ)令函数g(x)=F(x,2)+alnx,讨论函数g(x)是否有极值,如果有,说明是极大值还是极小值.
(Ⅲ)证明:当x,y∈N*且x<y时,F(x,y)>F(y,x).

查看答案和解析>>

同步练习册答案