精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=2,OC=4,E是OC的中点,求二面角E-AB-C的余弦值.
分析:以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则有
AB
=(3,0,-2)
AE
=(0,2,-2)
AC
=(0,4,-2)
,由向量法能求出二面角A-BE-C的余弦值.
解答:解:以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,
则有A(0,0,2),B(2,0,0),C(0,4,0),E(0,2,0),
AB
=(3,0,-2)
AE
=(0,2,-2)
AC
=(0,4,-2)
,…(3分)
设平面ABE的法向量为
n1
=(x,y,z),
则由
n1
⊥ 
AB
n1
AE

2x-2z=0
2y-2z=0
,取
n
1=(1,1,1),…..(5分)
n2
AB
n2
AC
n2
AC
,得
2x-2z=0
4y-2z=0
,取
n
2=(2,1,2),…..(7分)
所以cos<
n1
n2
=
n1
n2
|
n1
|•|
n2
|
=
5
3
•3
=
5
3
9
为二面角A-BE-C的余弦值.…..(10分)
点评:本题考查二面角的余弦值的求法,解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求O点到面ABC的距离;
(2)求异面直线BE与AC所成的角;
(3)求二面角E-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC中,
OA
=
a
OB
=
b
OC
=
c
,G点为△OBC的重心,则
AG
=(  )
A、
1
3
a
-
b
+
1
3
c
B、-
a
+
1
3
b
+
1
3
c
C、
1
3
a
+
1
3
b
-
c
D、-
a
+
2
3
b
+
2
3
c

查看答案和解析>>

同步练习册答案