精英家教网 > 高中数学 > 题目详情
15.定义在R上的奇函数f(x)满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=cos($\frac{π}{2}$x+$\frac{π}{2}$),则函数y=f(x)-log4|x|的零点个数是(  )
A.4B.5C.6D.7

分析 f(x)是个周期为2的周期函数,且是个奇函数,在一个周期(-1,1)上,y=-sin$\frac{π}{2}$x,-1<f(x)<1,同理得到在其他周期上的图象;y=log4|x|是个偶函数,图象过(1,0),和(4,1),结合图象可得函数y=f(x)的图象与函数y=log4|x|的图象的交点个数,从而得到函数零点个数.

解答 解:由题意知,函数y=f(x)是个周期为2的周期函数,且是个奇函数,在一个周期(-1,1)上,y=-sin$\frac{π}{2}$x,-1<f(x)<1,同理得到在其他周期上的图象.
函数y=log4|x|是个偶函数,先看他们在[0,+∞)上的交点个数,则它们总的交点个数是在[0,+∞)上的交点个数的2倍,在(0,+∞)上,y=log4|x|=log4x,图象过(1,0),和(4,1),是单调增函数,与f(x)交与3个不同点,∴函数y=f(x)的图象与函数y=log4|x|的图象的交点个数是6个.
故选C.

点评 本题本题考查函数的周期性、奇偶性、函数图象的对称性,体现数形结合的数学思想.考查的知识点是根的存在性及根的个数判断,其中根据已知条件分析函数的性质,进而判断出函数零点的分布情况是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过椭圆$\frac{x^2}{2}+{y^2}=1$右焦点F的直线l与椭圆交于两点C,D,与直线x=2交于点E.
(Ⅰ)若直线l的斜率为2,求|CD|;
(Ⅱ)设O为坐标原点,若S△ODE:S△OCE=1:3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设Sn是公差为d的等差数列{an}的前n项和,则数列S6-S3,S9-S6,S12-S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设Tn是公比为2的等比数列{bn}的前n项积,则数列$\frac{T_6}{T_3}$,$\frac{T_9}{T_6}$,$\frac{{{T_{12}}}}{T_9}$是等比数列,且其公比的值是512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,点$P(1,\frac{3}{2})$和动点Q(m,n)都在离心率为$\frac{1}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求椭圆的方程;
(2)若直线l的方程为3mx+4ny=0,点R(点R在第一象限)为直线l与椭圆的一个交点,点T在线段OR上,且QT=2.
①若m=-1,求点T的坐标;
②求证:直线QT过定点S,并求出定点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴两端点为B1(0,-1)、B2(0,1),离心率e=$\frac{\sqrt{3}}{2}$,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,
(Ⅰ)求椭圆C的方程和|OM|•|ON|的值;
(Ⅱ)若点M坐标为(1,0),过M点的直线l与椭圆C相交于A,B两点,试求△ABN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的奇函数f(x)满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=x-1,则函数y=f(x)-log4|x|的零点个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,6},那么(∁UA)∩B等于(  )
A.{2,4,6}B.{4,6}C.{3,4,6}D.{2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知log23=a,log72=b,则log421=$\frac{ab+1}{2b}$.(用a,b表示)

查看答案和解析>>

同步练习册答案