精英家教网 > 高中数学 > 题目详情
5.不等式x2-2x-3<0成立的充要条件是x∈(-1,3).

分析 利用一元二次不等式的解法与充要条件的意义即可得出.

解答 解:不等式x2-2x-3<0?(x-3)(x+1)<0?-1<x<3.
∴不等式x2-2x-3<0成立的充要条件是x∈(-1,3).
故答案为:x∈(-1,3).

点评 本题考查了一元二次不等式的解法与充要条件的意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$=1|,$\overrightarrow{a}$•$\overrightarrow{b}$=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若命题“?x∈R,ax2+2x+1>0”为真命题,则a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}{-x+1,0≤x≤1}\\{lnx,1<x≤e}\end{array}\right.$,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(  )
A.$\frac{2e-3}{2e}$B.$\frac{3}{2e}$C.$\frac{{e}^{e}{-e}^{2}+e-1}{e}$D.$\frac{e-1}{e+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列满足条件的圆的方程
(1)圆心为C(2,-2)且过点P(6,3)的圆的方程
(2)己知点A(-4,-5),B(6,-1),求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设等差数列{an}的前n项和为Sn,且${S_n}=\frac{1}{3}n{a_n}+{a_n}-c$(c是常数,n∈N*),a2=6.
(1)求数列{an}的通项公式
(2)证明:$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow{m}$=(x,y),$\overrightarrow{n}$=(x-y),P为曲线$\overrightarrow{m}$•$\overrightarrow{n}$=1(x>0)上的一个动点,若点P到直线x-y+1=0的距离大于λ恒成立,则实数λ的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}x-5,x≥2000\\ f[{f(x+8)}],x<2000\end{array}$,则f(1996)=(  )
A.1999B.1998C.1997D.2002

查看答案和解析>>

同步练习册答案