精英家教网 > 高中数学 > 题目详情

【题目】正方形ABCD的边长为2,对角线ACBD相交于点O,动点P满足,若,其中mnR,则的最大值是________

【答案】

【解析】

建立合适的直角坐标系写出坐标表示,又,所以,则,其几何意义为过点E(﹣3,﹣2)与点Psinθcosθ)的直线的斜率,由点到直线的距离得:设直线方程为y+2kx+3),点P的轨迹方程为x2+y21,由点到直线的距离有:,可得解。

建立如图所示的直角坐标系,则A(﹣1,﹣1),B1,﹣1),D(﹣11),P),所以1sinθ+1),20),02),

所以,则

其几何意义为过点E(﹣3,﹣2)与点Psinθcosθ)的直线的斜率,

设直线方程为y+2kx+3),点P的轨迹方程为x2+y21

由直线与圆的位置关系有:

解得:,即的最大值是1

故答案为:1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,分别为棱的中点,为棱上的一点,且,设点的中点,则点到平面的距离为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )

A. 年至年研发投入占营收比增量相比年至年增量大

B. 年至年研发投入增量相比年至年增量小

C. 该企业连续年研发投入逐年增加

D. 该企业来连续年来研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P-ABC中,三条侧棱PAPBPC两两垂直,且,又M是底面ABC内一点,则M到三个侧面的距离的平方和的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC的对边分别为abc,满足acosB+bcosA=2ccosC

1)求角C的大小;

2)若ABC的周长为3,求ABC的内切圆面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过定点的直线为.

1)若仅有一个公共点,求直线的方程;

2)若交于两点,直线的斜率分别为,试探究的数量关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次“综艺类和体育类节目,哪一类节目受中学生欢迎”的调查中,随机调查了男女各100名学生,其中女同学中有73人更爱看综艺类节目,另外27人更爱看体育类节目;男同学中有42人更爱看综艺类节目,另外58人更爱看体育类节目.

(1)根据以上数据填写如下列联表:

综艺类

体育类

总计

总计

(2)试判断是否有的把握认为“中学生更爱看综艺类节目还是体育类节目与性别有关”.

参考公式:,其中.

临界值表:

0.025

0.01

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C与双曲线有相同的渐近线,且双曲线C过点

(1)若双曲线C的左、右焦点分别为,双曲线C上有一点P,使得,求△的面积;

(2)过双曲线C的右焦点作直线l与双曲线右支交于AB两点,若△的周长是,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中有高一新生500名,分成水平相同的两类教学实验,为对比教学效果,现用分层抽样的方法从两类学生中分别抽取了40人,60人进行测试

1)求该学校高一新生两类学生各多少人?

2)经过测试,得到以下三个数据图表:

175分以上两类参加测试学生成绩的茎叶图

2100名测试学生成绩的频率分布直方图

下图表格:100名学生成绩分布表:

先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;

该学校拟定从参加考试的79分以上(含79分)的类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.

查看答案和解析>>

同步练习册答案