精英家教网 > 高中数学 > 题目详情

(12分)(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.

(Ⅰ)见解析(Ⅱ)

解析试题分析:(I)由已知容易证PA⊥CE,CE⊥AD,由直线与平面垂直的判定定理可得
(II)由(I)可知CE⊥AD,从而有四边形ABCE为矩形,且可得P到平面ABCD的距离PA=1,代入锥体体积公式可求
解:(I)证明:因为PA⊥平面ABCD,CE?平面ABCD,
所以PA⊥CE,
因为AB⊥AD,CE∥AB,所以CE⊥AD
又PA∩AD=A,所以CE⊥平面PAD
(II)由(I)可知CE⊥AD
在Rt△ECD中,DE=CDcos45°=1,CE=CDsin45°=1,又因为AB=CE=1,AB∥CE
所以四边形ABCE为矩形
所以
=
又PA⊥平面ABCD,PA=1
所以
点评:本题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查空间想象能力、推理论证能力,运算求解的能力;考查数形结合思想,化归与转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:面
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥D-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中, 是菱形,是矩形,,

(1)求证:平
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥,底面为矩形,侧棱,其中为侧棱上的两个三等分点,如下图所示.
(1)求证:
(2)求异面直线所成角的余弦值;
(3)求二面角的余弦值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形,侧面
底面,且分别为的中点.

(1)求证:平面;   
(2)求证:面平面
(3)在线段上是否存在点,使得二面角的余弦值为?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三棱柱的侧棱与底面垂直,且
,点分别为的中点.
(1)求证:平面
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•山东)如图,在四棱台ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,
中点,上一点,且.
(1)当时,求证:平面
(2)若直线与平面所成的角为,求的值.

查看答案和解析>>

同步练习册答案