精英家教网 > 高中数学 > 题目详情
11.王师傅为响应国家开展全民健身运动的号召,每天坚持“健步走”,并用计步器对每天的“健步走”步数进行统计,他从某个月中随机抽取10天“健步走”的步数,绘制出的频率分布直方图如图所示.
(1)试估计该月王师傅每天“健步走”的步数的中位数及平均数(精确到小数点后1位);
(2)某健康组织对“健步走”结果的评价标准为:
每天的步数分组
(千步)
[8,10)[10,12)[12,14]
评价级别及格良好优秀
现从这10天中评价级别是“良好”或“及格”的天数里随机抽取2天,求这2天的“健步走”结果属于同一评价级别的概率.

分析 (1)由频率分布直方图,能估计该月王师傅每天“健步走”的步数的中位数及平均数.
(2)设评价级别是“良好”或“及格”的这4天分别为a1,a2,b1,b2,由此利用列举法能求出从统计的这10天中评价级别是“良好”或“及格”的天数里随机抽取的2天,属于同一评价级别的概率.

解答 解:(1)由频率分布直方图,
得中位数为:12+$\frac{1}{6}×2$=$\frac{37}{3}$≈12.3(千步),
平均数为:0.2×9+0.2×11+0.6×13=11.8(千步).
(2)设评价级别是“良好”或“及格”的这4天分别为a1,a2,b1,b2
则从这4天中任意抽取2天,总的抽法有:a1a2,a1b1,a1b2,a2b1,a2b2,b1b2,共6种.
所抽取的2天属于同一评价级别的情况只有a1a2,b1b2,共2种.
∴从统计的这10天中评价级别是“良好”或“及格”的天数里随机抽取的2天,
属于同一评价级别的概率是$\frac{1}{3}$.

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,E是圆内两弦AB和CD的交点,F为AD延长线上一点,FG切圆于G,且FE=FG.
(I)证明:FE∥BC;
(Ⅱ)若AB⊥CD,∠DEF=30°,求$\frac{AF}{FG}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知an=2n-1,n∈N*,将数列{an}的项依次按如图的规律“蛇形排列”成一个金字塔状的三角形数阵,其中第m行有2m-1个项,记第m行从左到右的第k个数为bm,k(1≤k≤2m-1,m,k∈N*),如b3,4=15,b4,2=29,则bm,k=$\left\{\begin{array}{l}{2{m}^{2}-4m+k+1,m为奇数}\\{2{m}^{2}-2k+1,m为偶数}\end{array}\right.$(结果用m,k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y2=2px(p>0)的焦点为F,其准线与双曲线y2-x2=1相交于A,B两点,若△ABF为等边三角形,则p=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.计算sin5°cos55°+cos5°sin55°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x,y满足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,则z=x+y的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{1}{x}$的图象的对称中心为(0,0);函数y=$\frac{1}{x}$+$\frac{1}{x-1}$的图象的对称中心为($\frac{1}{2}$,0);函数y=$\frac{1}{x}$+$\frac{1}{x-1}$+$\frac{1}{x-2}$的图象的对称中心为(1,0);…;由此推测函数y=$\frac{1}{x}$+$\frac{1}{x-1}$+$\frac{1}{x-2}$+…+$\frac{1}{x-n}$的图象的对称中心为($\frac{n}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=2sin2($\frac{w}{2}$x)+sin(wx-$\frac{π}{6}$)(w>0),且f(x)的最小正周期为π,则实数w=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=alnx+$\frac{1}{2}$x2(a>0),若对任意两个不等的正实数x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥2恒成立,则a的取值范围是[1,+∞).

查看答案和解析>>

同步练习册答案