精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆经过点,且点到椭圆的两焦点的距离之和为.

(l)求椭圆的标准方程;

(2)若是椭圆上的两个点,线段的中垂线的斜率为且直线交于点为坐标原点,求证:三点共线.

【答案】(1) (2)见解析

【解析】分析:

(1)根据椭经过点,且点到椭圆的两焦点的距离之和为,结合性质 ,,列出关于 的方程组,求出 ,即可得椭圆的标准方程;

(2)可设直线的方程为,联立,设点,根据韦达定理可得,所以点在直线上,又点也在直线上,进而得结果.

详解:

(1)因为点到椭圆的两焦点的距离之和为

所以,解得.

又椭圆经过点,所以.

所以.

所以椭圆的标准方程为.

证明:(2)因为线段的中垂线的斜率为

所以直线的斜率为-2.

所以可设直线的方程为.

.

设点.

所以 .

所以.

因为,所以.

所以点在直线上.

又点也在直线上,

所以三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点Ax1y1),Dx2y2)其中(x1x2)是曲线y29xy≥0).上的两点,AD两点在x轴上的射影分别为点BC|BC|3

(Ⅰ)当点B的坐标为(10)时,求直线AD的方程:

(Ⅱ)记AOD的面积为S1,梯形ABCD的面积为S2,求的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数(0,)为型函数,共中

(1)若型函数,求函数的值域;

(2)若型函数,求函数极值点个数;

(3)若型函数,在上有三点A、B、C横坐标分別为,其中,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线ly=2x+2,若l与椭圆 的交点为A,B,点P为椭圆上的动点,则使△PAB的面积为 的点P的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了110人,其中女性50人,男性60.女性中有30人主要的休闲方式是看电视,另外20人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外40人主要的休闲方式是运动.

1)根据以上数据建立一个列联表;

2)判断是否有99%的把握认为性别与休闲方式有关系.

下面临界值表供参考:

0.10

0.05

0.010

0.001

k

2.706

3.841

6.635

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,ACBD=O,△PAC是边长为2的等边三角形,

1)求四棱锥P-ABCD的体积VP-ABCD

2)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一块直角三角形木板置于平面直角坐标系中,已知,点是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点的任一直线将三角形木板锯成.设直线的斜率为.

(Ⅰ)求点的坐标及直线的斜率的范围;

(Ⅱ)令的面积为,试求出的取值范围;

(Ⅲ)令(Ⅱ)中的取值范围为集合,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆方程为,点,直线过点

1)如图1,直线的斜率为,直线交圆不同两点,求弦的长度;

2)动点在圆上作圆周运动,线段的中点为点,求点的轨迹方程;

3)在(1)中,如图2,过点作直线,交圆不同两点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

同步练习册答案