精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(a﹣bx3)ex ,且函数f(x)的图象在点(1,e)处的切线与直线x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求证:当x∈(0,1)时,f(x)>2.

【答案】解:(Ⅰ)因为f(1)=e,故(a﹣b)e=e,故a﹣b=1①; 依题意,f′(1)=﹣2e﹣1;又
故f′(1)=ae﹣1﹣4be=﹣2e﹣1,故a﹣4b=﹣2②,
联立①②解得a=2,b=1,
(Ⅱ)证明:由(Ⅰ)得
要证f(x)>2,即证2ex﹣exx3>2+
令g(x)=2ex﹣exx3 , ∴g′(x)=ex(﹣x3﹣3x2+2)=﹣ex(x3+3x2﹣2)=﹣ex(x+1)(x2+2x﹣2),
故当x∈(0,1)时,﹣ex<0,x+1>0;
令p(x)=x2+2x﹣2,因为p(x)的对称轴为x=﹣1,且p(0)p(1)<0,
故存在x0∈(0,1),使得p(x0)=0;
故当x∈(0,x0)时,p(x)=x2+2x﹣2<0,g′(x)=﹣ex(x+1)(x2+2x﹣2)>0,
即g(x)在(0,x0)上单调递增;
当x∈(x0 , 1)时,p(x)=x2+2x﹣2>0,故g′(x)=﹣ex(x+1)(x2+2x﹣2)<0,
即g(x)在(x0 , 1)上单调递减;因为g(0)=2,g(1)=e,
故当x∈(0,1)时,g(x)>g(0)=2,
又当x∈(0,1)时, ,∴
所以2ex﹣exx3>2+ ,即f(x)>2
【解析】(Ⅰ)根据函数f(x)的图象在点(1,e)处的切线与直线x﹣(2e+1)y﹣3=0垂直,求得a,b;(Ⅱ)由(Ⅰ)得 ,证f(x)>2,即证2ex﹣exx3>2+ ,构造函数,确定函数的单调性,即可证明结论.
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:
①已知X服从正态分布N(0,σ2),且P(﹣2≤X≤2)=0.6,则P(X>2)=0.2;
②若命题 ,则¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
其中正确的结论的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若关于的不等式的解集是,求的值;

(2)设关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上各点的横坐标缩短为原来的 ,再将所得曲线向左平移1个单位,得到曲线C1 , 求曲线C1上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为k(k≠0)的直线 交椭圆 两点。
(1)记直线 的斜率分别为 ,当 时,证明:直线 过定点;
(2)若直线 过点 ,设 的面积比为 ,当 时,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张卡片分别写有数字,从中任取张,可排出不同的四位数个数为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案