精英家教网 > 高中数学 > 题目详情
8.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若双曲线右支上存在一点($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$)与点F1关于直线y=-$\frac{bx}{a}$对称,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.$\sqrt{2}$

分析 求出过F1(c,0)且垂直于$y=-\frac{bx}{a}$的直线方程,求出它与$y=-\frac{bx}{a}$的交点坐标,求出点P的坐标,代入双曲线方程化简求解即可.

解答 解:由题意过F1(c,0)且垂直于$y=-\frac{bx}{a}$的直线方程为$y=\frac{a}{b}(x-c)$,
它与$y=-\frac{bx}{a}$的交点坐标为$(\frac{a^2}{c},-\frac{ab}{c})$,所以点P的坐标为$(\frac{{2{a^2}}}{c}-c,-\frac{2ab}{c})$,
因为点P在双曲线上,$\frac{{{{(\frac{{2{a^2}}}{c}-c)}^2}}}{a^2}-\frac{{{{(-\frac{2ab}{c})}^2}}}{b^2}=1$,
∵a2+b2=c2,可得c2=5a2,∴$\frac{c^2}{a^2}=5$,
∴$e=\frac{c}{a}=\sqrt{5}$,
故选:A.

点评 本题考查双曲线的性质的应用.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\sqrt{x+1}+{(2-x)^0}$的定义域为{x|x≥-1,且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.椭圆的离心率e满足$\frac{\sqrt{3}}{3}$≤e≤$\frac{\sqrt{2}}{2}$,则椭圆长轴的取值范围是(  )
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\sqrt{3}$,2]C.[$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{6}}{2}$]D.[$\sqrt{5}$,$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈[0,3],a≥2x-2,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=eax+2x(x∈R)有大于零的极值点,则实数a的取值范围是(  )
A.a>-2B.a<-2C.a$>-\frac{1}{2}$D.a$<-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则函数f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=$\frac{{{x^2}+mx+m}}{x}$的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(3)在(1)、(2)的条件下,若对实数x<0及t>0,恒有g(x)<f(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}}\right.$,求目标函数Z=y-2x的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.写出集合{(1,2),(3,4)}的真子集:∅,{(1,2)},{(3,4)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=1,a2=3,且an+1=(p+q)an-pqan-1(n≥2,q≠0).
(Ⅰ)若p=2,设bn=an+1-2an(n∈N*),证明:{bn}是等比数列;
(Ⅱ)对任意的n∈N*,设cn=an+1-qan,证明:“数列{cn}为常数列”的充要条件是“p=1”.

查看答案和解析>>

同步练习册答案